THERMODYNAMIC FORMALISM FOR NULL RECURRENT POTENTIALS

BY

OMRI M. SARIG

School of Mathematical Sciences, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel e-mail: sarig@math.tau.ac.il

ABSTRACT

We extend Ruelle's Perron-Frobenius theorem to the case of Hölder continuous functions on a topologically mixing topological Markov shift with a countable number of states. Let $P(\phi)$ denote the Gurevic pressure of ϕ and let L_{ϕ} be the corresponding Ruelle operator. We present a necessary and sufficient condition for the existence of a conservative measure ν and a continuous function h such that $L^*_{\phi}\nu = e^{P(\phi)}\nu$, $L_{\phi}h = e^{P(\phi)}h$ and characterize the case when $\int h d\nu < \infty$. In the case when $dm = h d\nu$ is infinite, we discuss the asymptotic behaviour of L_{ϕ}^{k} , and show how to interpret *dm as an* equilibrium measure. We show how the above properties reflect in the behaviour of a suitable dynamical zeta function. These results extend the results of [18] where the case $\int h d\nu < \infty$ was studied.

1. Introduction and statement of main results

Let S be a countable set of states and $A = (t_{ij})_{S \times S}$ a matrix of zeroes and ones. We identify S with N and induce an order on S. Let $X =$ $\{x \in S^{\mathbf{N} \cup \{0\}}; \forall i \ t_{x_ix_{i+1}} = 1\}$ and $T: X \to X$ be the left shift $(Tx)_i = x_{i+1}$. Fix $r \in (0, 1)$ and set $t(x, y) = \inf\{i: x_i \neq y_i\}$. We endow X with the topology induced by the metric $d_r(x, y) = r^{t(x,y)}$. The cylinder sets

$$
[\underline{a}] = [a_0, \ldots, a_{n-1}] = \{x \in X: \forall i \ x_i = a_i\}
$$

form a base for this topology and generate the corresponding Borel σ -algebra B. Let α be the partition $\{[a]: a \in S\}$. The elements of α are called **partition sets**,

Received June 8, 1998 and in revised form July 18, 1999

and the members of α_0^{n-1} are called cylinders of length n. We denote the length of a cylinder $[a]$ by $|a|$.

X is called **topologically mixing** if (X, T) is topologically mixing. This means that $\forall a, b \in S$ $\exists N_{ab}$ $\forall n > N_{ab}$ [a] \cap $T^{-n}[b] \neq \emptyset$. Throughout this paper, a function $\phi: X \to \mathbf{R}$ is called locally Hölder continuous (with parameter r), if it is uniformly Lipschitz continuous with respect to d_r on all cylinders of length 2. This is equivalent to the requirement that $\exists A > 0, r \in (0,1)$ such that $\forall n \geq 2$ $V_n[\phi] < Ar^n$ where $V_n[\phi] = \sup\{|\phi(x) - \phi(y)| : x_0 = y_0, \ldots, x_{n-1} = y_{n-1}\}.$ This notion of Hölder continuity extends the one considered in [18], where $V_n[\phi] < Ar^n$ was also assumed for $n = 1$. Indeed, every function of the form $\phi = \phi(x_0, x_1)$ is locally Hölder continuous, even when $V_1(\phi) = \infty$ (in which case it does not satisfy the condition used in [18]). A close reading of [18] shows that the seemingly greater generality does not affect the arguments in sections 1-4 there.

The Ruelle Operator [15] is given by $(L_{\phi}f)(x) = \sum_{T} y = x e^{\phi(y)} f(y)$. If $||L_{\phi}1||_{\infty} < \infty$ this is a bounded linear operator on the Banach space of bounded continuous functions on X . Note that for a countable Markov shift the sum which defines L_{ϕ} may be infinite, in which case ϕ must be unbounded in order for it to converge. This is not a problem since local Hölder continuity on a non-compact space does not imply boundness.

In this paper the term 'measure' refers to any σ -finite Borel measure μ which is not trivial in the sense that there is some $A \in \mathcal{B}$ for which $\mu(A) > 0$. We use the notation $\mu(f)$ for the integral of the function f with respect to μ , when it exists. The measure $\mu \circ T$ is the measure given on cylinders by

(1)
$$
(\mu \circ T)(A) = \sum_{a \in S} \mu(T(A \cap [a])).
$$

Integrals with respect to $\mu \circ T$ are given by

$$
\int f d\mu \circ T = \sum_{a \in S} \int_{T[a]} f(ax) d\mu(x).
$$

If μ is non-singular (i.e. $\mu \sim \mu \circ T^{-1}$) then $\mu \ll \mu \circ T$ and the function $g_{\mu} =$ $d\mu/d\mu$ oT is well defined μ oT almost everywhere. It is characterized $mod \mu$ oT by the property that $L_{\log g_{\mu}}$ acts as the transfer operator of μ , i.e. $\mu(\varphi_1 L_{\log g}\varphi_2)$ = $\mu(\varphi_1 \circ T \cdot \varphi_2)$ for every $\varphi_1 \in L^{\infty}(\mu)$, $\varphi_2 \in L^1(\mu)$. We will also make use of the measures $\mu \circ T^n$ defined by induction by $\mu \circ T^n = (\mu \circ T^{n-1}) \circ T$.

For every $a \in S$, $n \in \mathbb{N}$ set $Z_n(\phi, a) = \sum_{T^n x = x} e^{\phi_n(x)} 1_{[a]}(x)$ where $\phi_n =$ $\sum_{k=0}^{n-1} \phi \circ T^k$. It was shown in [18] that if X is topologically mixing and ϕ is locally Hölder continuous then the limit

$$
P_G(\phi) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(\phi, a)
$$

exists, is independent of a and belongs to $(-\infty, \infty]$. If $||L_{\phi}1||_{\infty} < \infty$, this limit is finite and satisfies

(2)
$$
P_G(\phi) = \sup \left\{ h_\mu(T) + \int \phi d\mu : \mu \in \mathcal{P}_T(X), \mu(-\phi) < \infty \right\}
$$

where $\mathcal{P}_T(X)$ denotes the set of all invariant Borel probability measures. $P_G(\phi)$ is called the Gurevic Pressure of ϕ , and is a generalization of the Gurevic topological entropy (Gurevic $[7]$). (The above results were stated in $[18]$ only for locally Hölder continuous functions for which $V_1(\phi) < \infty$ but the proofs only require that $\sum_{n>2} V_n(\phi)$ be finite.)

In [18] a necessary and sufficient condition was given for Ruelle's Perron-- Frobenius theorem to hold: there exist a positive number λ , a positive continuous function h and a σ -finite Borel measure ν such that $L_{\phi}h = \lambda h$, $L_{\phi}^* \nu = \lambda \nu$, $\int h d\nu = 1$ and such that for every cylinder [a], $\lambda^{-n} L_{\phi}^{n} 1_{\alpha} \longrightarrow h\nu[\alpha]$ uniformly on compacts. If this is the case, $P_G(\phi) = \log \lambda$ and $dm = h d\nu$ is an invariant probability measure which can be interpreted as the 'equilibrium' measure of ϕ in a certain sense (see [18] for details).

In this paper we study the case when Ruelle's Perron-Frobenius theorem fails. The main theme of this work is that the phenomenology of this situation is analogous to that one encounters in the case of a null recurrent or a transient probabilistic Markov chain (see [6], [10], [20]). In this situation $\lambda^{-n} L_{\phi}^{n} 1_{[\underline{a}]} \longrightarrow 0$, but there may exist constants $a_n \nearrow \infty$ for which for every cylinder $a_n^{-1} \sum_{k=1}^n \lambda^{-n} L_{\phi}^n 1_{[\underline{a}]} \longrightarrow h\nu[\underline{a}]$ pointwise where $L_{\phi}h = \lambda h, L_{\phi}^* \nu = \lambda \nu, \int h \, d\nu =$ ∞ . In this case, the measure $dm = hd\nu$ is an infinite invariant measure which can be described as the appropriate 'equilibrium measure' of ϕ . Given ν , the construction of h is done using the techniques of $[3]$ (see also $[2]$, $[12]$, $[21]$, $[22]$, $[28]$, [29], [30], [31]). The main point of this paper is the construction of a conformal measure ν with respect to which these methods can be applied.

We proceed to make our statements more precise. Set

$$
Z_n(\phi, a) = \sum_{\substack{T^n x = x \\ x_0 = a}} e^{\phi_n(x)}; \quad Z_n^*(\phi, a) = \sum_{\substack{T^n x = x \\ x_0 = a; x_1, \dots, x_{n-1} \neq a}} e^{\phi_n(x)}.
$$

We introduce the following definition, in analogy with the theory of Markov chains:

Definition 1: Let X be topologically mixing and ϕ be locally Hölder continuous with finite Gurevic pressure $\log \lambda$. ϕ is called:

- 1. recurrent if for some (hence all) $a \in S$, $\sum_{n < \infty} \lambda^{-n} Z_n(\phi, a) = \infty$; and transient otherwise;
- 2. positive recurrent if it is recurrent and for some (hence all) $a \in S$, $\sum_{n<\infty} n\lambda^{-n}Z_n^*(\phi,a)<\infty;$
- 3. null recurrent if it is recurrent and for some (hence all) $a \in S$, $\sum_{n < \infty} n \lambda^{-n} Z_n^*(\phi, a) = \infty.$

The notion of positive recurrence was given a different, though equivalent, definition in [18]. The equivalence follows from Theorem 1 below. It can be easily verified that if $\phi = \phi(x_0, x_1)$ then recurrence, positive recurrence and null recurrence are equivalent to the matrix $(e^{\phi(i,j)})_{S\times S}$ being R-recurrent, R-positive and R-null in the terminology of Vere-Jones [24], [24]. The main results of this paper are contained in the following theorem:

THEOREM 1: Let X be topologically mixing and ϕ locally Hölder continuous with finite Gurevic pressure. ϕ is recurrent iff there exist $\lambda > 0$, a conservative *measure u, finite and positive on cylinders, and a positive continuous function h* such that $L^*_{\phi} \nu = \lambda \nu$ and $L_{\phi} h = \lambda h$. In this case $\lambda = \exp P_G(\phi)$ and $\exists a_n \nearrow \infty$ such that for every *cylinder* $[q]$ and $x \in X$

(3)
$$
\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} (L_{\phi}^k 1_{[\underline{a}]})(x) \underset{n\to\infty}{\longrightarrow} h(x)\nu[\underline{a}],
$$

where $\{a_n\}_n$ satisfies $a_n \sim (\int_{a|} h \, d\nu)^{-1} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a)$ for every $a \in S$. *Purthermore,*

- *1. if* ϕ *is positive recurrent then* $\nu(h) < \infty$, $a_n \sim n$ const, and for every [a], $\lambda^{-n} L_{\phi}^{n} 1_{\{a\}} \longrightarrow h\nu[\underline{a}]/\nu(h)$ uniformly on compacts;
- 2. if ϕ is null recurrent then $\nu(h) = \infty$, $a_n = o(n)$, and for every $\lbrack a \rbrack$, $\lambda^{-n} L_{\phi}^{n}1_{\{\underline{a}\}} \longrightarrow 0$ uniformly on cylinders.

Remark 1: In the case when ϕ depends on a finite number of coordinates, this theorem can be derived from the work of Vere-Jones on countable matrices ([24], [25]). The case when ϕ depends on an infinite number of coordinates, however, requires techniques which are essentially different. The main new ingredient in the proof is a tightness argument (see Proposition 2).

Remark 2: It follows from the proof that $\log h$ and $\log h \circ T$ are both locally Hölder continuous (in particular h is uniformly bounded away from zero and infinity on partition sets). It follows from (3) that ν and h are uniquely determined up to a multiplicative factor.

Remark 3: The measure $dm = h dv$ is invariant and conservative, and its transfer operator is given by $\hat{T}f = \lambda^{-1}h^{-1}L_{\phi}(hf)$. It follows from local Hölder continuity and results in [3] that *dm* is exact, pointwise dual ergodic and that for dm, every cylinder [a] is a Darling-Kac set with an exponential continued fraction mixing return time process. See [2], [3] for definitions and a survey of limit theorems for such measures m .

We now show how to formulate the results of Theorem 1 in terms of suitable dynamical zeta functions.

Assume that X is topologically mixing and that ϕ is locally Hölder continuous such that $||L_{\phi}1||_{\infty} < \infty$. In this case, by the results of [18], $P_G(\phi)$ is finite and (2) holds. Recall that Ruelle's dynamical zeta function [15] is given by

$$
\zeta(t) = \exp\biggl(\sum_{n=1}^{\infty} \frac{t^n}{n} Z_n(\phi)\biggr)
$$

where $Z_n(\phi) = \sum_{a \in S} Z_n(\phi, a) = \sum_{T^n x = x} e^{\phi_n(x)}$. The radius of convergence of ζ is equal to $e^{-P(\phi)}$ where $P(\phi) = \overline{\lim}_{n \to \infty} (1/n) \log Z_n(\phi)$.

If S is finite, $P(\phi) = P_G(\phi)$ whence ζ is holomorphic in $[|z| < e^{-P}]$, where $P = \sup\{h_\mu + \mu(\phi)\}\$ (in this case X is compact, so ϕ is bounded and the condition $\mu(-\phi) < \infty$ in (2) is empty). It is also known that in this case ζ has a simple pole in e^{-P} [15].

If S is infinite $P(\phi)$ may be strictly larger than P (for examples in the case $\phi = 0$ see [7] and [16]). Therefore, the disc of convergence of ζ may be strictly smaller than $\{z: |z| < e^{-P}\}$. We are naturally led to the consideration of the following local dynamical zeta functions defined for each $a \in S$,

$$
\zeta_a(t) = \exp\bigg(\sum_{n=1}^{\infty} \frac{t^n}{n} Z_n(\phi, a)\bigg).
$$

Note that at least formally, $\zeta = \prod_{a \in S} \zeta_a$. The radius of convergence of ζ_a is independent of a, and is equal to $e^{-P_G(\phi)}$ where $P_G(\phi)$ satisfies (2). Obviously, ζ_a has a singularity in $e^{-P_G(\phi)}$.

As the following corollary shows, the behavior of ζ_a near this singularity determines the recurrence properties of ϕ (this is similar to the role of generating functions in renewal theory [6]). The following corollary is obtained from Theorem 1.

COROLLARY 1: Let X be topologically mixing and ϕ locally Hölder continuous such that $||L_{\phi}1||_{\infty} < \infty$. *Fix a* \in *S* and let $R = e^{-P_G(\phi)}$ be the radius of *convergence of* ζ_a .

1. ϕ is recurrent iff $(\log \zeta_a)'(R) = \infty$. In this case, if dm = hdv is the *corresponding invariant measure and* ${a_n}_n$ *is a return sequence of m, then*

$$
(\log \zeta_a)'(t) \sim \frac{m[a]}{R} \left(1 - \frac{t}{R}\right) \sum_{n=1}^{\infty} a_n R^{-n} t^n \text{ as } t \nearrow R.
$$

- 2. ϕ is positive recurrent iff there exists $C_a > 0$ such that $(\log \zeta_a)' \sim$ $C_a(1 - t/R)^{-1}$ as $t \nearrow R$. In this case $C_a = e^{P_G(\phi)}m[a]$ where m is the *equilibrium probability measure of* ϕ *.*
- 3. ϕ is null recurrent iff $(\log \zeta_a)' = o(1/(1 t/R))$ as $t \nearrow R$ and ϕ is recurrent.

It follows from the corollary that in the positive recurrent case

$$
\zeta_a(t) = \left(\frac{1}{1 - e^{P_G(\phi)}t}\right)^{m[a](1 + o(1))} \quad \text{as } t \nearrow e^{-P_G(\phi)}
$$

where m is the equilibrium *probability* measure of ϕ . If S is finite, we retrieve the well known property of $\zeta = \prod_{a \in S} \zeta_a$ that

$$
\zeta_a(t) = (1 - e^{P_G(\phi)}t)^{-(1 + o(1))} \text{ as } t \nearrow e^{-P_G(\phi)}
$$

(in fact $e^{-P_G(\phi)}$ is a simple pole [15]). In broad terms, the degree of singularity for the full zeta function is distributed among the various local zeta functions according to the equilibrium measure.

In section 2 we apply Theorem 1 to the theory of equilibrium states by describing the measure $dm = h dv$ as an equilibrium measure in a certain weak sense, when it is infinite. Section 3 contains a proof of Theorem 1.

Notational Convention: We use the following short-hand notation for double inequalities: $\forall a, b > 0, B > 1, a = B^{\pm 1}b \Leftrightarrow B^{-1}b < a < Bb$. We write $a = A^{\pm 1}B^{\pm 1}b$ for $a = (AB)^{\pm 1}b$, and $a = A^{\pm k}b$ for $a = (A^k)^{\pm 1}b$.

ACKNOWLEDGEMENT: This paper constitutes part of a Ph.D. thesis which was prepared in Tel Aviv University under the instruction of Jon Aaronson, to whom I would like to express my gratitude for his support and encouragment, and for many conversations and useful suggestions.

2. Application to the theory of equilibrium states

Let X be topologically mixing and ϕ be a locally Hölder continuous function with finite Gurevic pressure. Assume ϕ is recurrent. Let λ, ν and h denote the eigenvalue, eigenmeasure and eigenfunction given by Theorem 1. It is easy to verify that the measure $dm = h d\nu$ is an invariant conservative measure. This is *a Gibbs measure for* ϕ in the following sense: $\forall a, b \in S$ $\exists M_{ab} > 1$ such that for m-almost all $x \in X$

(4)
$$
m(x_0,\ldots,x_{n-1}|x_n,x_{n+1},\ldots)=\frac{h(x)e^{\phi_n(x)}}{\lambda^n h(T^nx)}=M_{x_0,x_n}^{\pm 1}e^{\phi_n(x)-nP_G(\phi)}.
$$

This is weaker than the Gibbs property used by Bowen in [5], because the bound M_{x_0,x_n} may depend on x. To prove (4), check that the transfer operator of m is given by $\hat{T}f = \lambda^{-1}h^{-1}L_{\phi}(hf)$ and that $\mathbf{E}_{m}(f|T^{-n}\mathcal{B}) = (\hat{T}^{n}f) \circ T^{n}$. The rest follows by direct computation from the fact that h is bounded away from zero and infinity on partition sets. Note that if ϕ is null recurrent, m is infinite.

We want to describe the measure m as a solution of a suitable variational problem. This was done for the positive recurrent case in [18] so we focus on null recurrent potentials. For such potentials m is infinite and the notion of entropy requires explanation.

We recall the definition given in [11], following the approach of [1]. Let (X, \mathcal{B}, μ, T) be an ergodic probability preserving transformation. For every measurable set with positive measure A one can define the induced transformation $T_A: A \to A$ by $T_A x = T^{\varphi_A(x)} x$ where $\varphi_A(x) = \inf \{ n \geq 1 : T^n x \in A \}$ (the Poincaré Recurrence theorem guarantees that $\varphi_A < \infty$ almost everywhere on A). It is known that the probability measure $\mu_A(E) = \mu(E \cap A)/\mu(A)$ is T_A -invariant and ergodic, and that its entropy is given by the Abramov Formula [4]:

$$
h_{\mu}(T)=\mu(A)h_{\mu_A}(T_A).
$$

If μ is infinite, ergodic and conservative, the same method of inducing applies (in this case Poincaré's theorem is replaced by the conservativity assumption). Applying the Abramov formula to T_A, T_B as induced versions of $T_{A\cup B}$ one sees that

$$
0 < \mu(A), \mu(B) < \infty \Rightarrow \mu(A)h_{\mu_A}(T_A) = \mu(B)h_{\mu_B}(T_B).
$$

Thus, the number $\mu(A)h_{\mu_A}(T_A)$ is independent of the choice of $A \in \mathcal{B}$ (as long as $0 < \mu(A) < \infty$) and may therefore be used as the *definition* of the entropy of the infinite conservative ergodic measure μ .

Example 1 (Krengel [11]): Let (p_{ij}) be a null recurrent irreducible stochastic matrix and (p_i) its stationary vector. Let μ be the corresponding invariant infinite Markovian measure. Then $h_{\mu} = -\sum_{s,t} p_s p_{st} \log p_{st}$.

For examples arising from interval maps, see [21].

THEOREM 2: Let X be topologically mixing and ϕ a recurrent locally Hölder *continuous function with finite Gurevic pressure.*

- 1. For every conservative ergodic invariant measure μ which is finite on *partition sets, if* $\mu(P_G(\phi) - \phi) < \infty$ *then* $h_\mu(T) \leq \mu(P_G(\phi) - \phi)$ *.*
- *2. Let h and v be as in Theorem 1 and set* $dm = h d\nu$ *. If* $m(P_G(\phi) \phi) < \infty$ *then* $h_m(T) = m(P_G(\phi) - \phi)$.

Proof: Without loss of generality assume that $P_G(\phi) = 0$ (we can always pass to the potential $\phi - P_G(\phi)$. Fix some invariant measure μ which satisfies the assumptions of the theorem and choose some partition set A of (finite) positive measure.

Let μ_A be the probability measure $\mu_A(E) = \mu(A \cap E)/\mu(A)$. Let $T_A: A \to A$ be the induced map $T_A x = T^{\varphi_A(x)} x$ where $\varphi_A(x) = 1_A \inf \{ n > 0 : T^n x \in A \}.$ Then μ_A is T_A invariant. Let

$$
\overline{S} = \{ [a] \subseteq A : A \text{ appears only once in } \underline{a} \text{ and } [a, A] \neq \emptyset \}.
$$

This is a generating Markov partition for $T_A(\mu_A(\cup \overline{S}) = 1$ by conservativity). Set $\overline{X} = (\overline{S})^{N \cup \{0\}}$ and let $\pi: \overline{X} \to A \subseteq X$ be the natural injection $\pi([\underline{a}]_1[\underline{a}]_2...) =$ $(\underline{a}_1;\underline{a}_2;\ldots)$. For every μ as in the above set $\overline{\mu} = \mu_A \circ \pi$. It is easy to check that the map $\pi: \overline{X} \to X$ is a measure theoretic isomorphism between the systems $(A, \mathcal{B} \cap A, \mu_A, T_A)$ and $(\overline{X}, \mathcal{B}(\overline{X}), \overline{\mu}, \overline{T})$ where $\overline{T}: \overline{X} \to \overline{X}$ is the left shift. Let $\overline{\phi}$: $\overline{X} \to \mathbf{R}$ be the induced version of the potential ϕ given by

$$
\overline{\phi} = \bigg(\sum_{i=0}^{\varphi_A -1} \phi \circ T^i\bigg) \circ \pi.
$$

This is a locally Hölder continuous function (in fact, it even satisfies $V_1(\overline{\phi}) < \infty$, since if $x_0 = [a] \in \overline{S}$ then $\pi(x) \in [a, A]$. The proof of local Hölder continuity is standard, and is therefore omitted.

Let L_{ϕ}^- denote the Ruelle operator of $\overline{\phi}$, $L_{\phi}^- f = \sum_{\overline{T} y = x} e^{\overline{\phi}(y)} f(y)$. Set $\overline{\nu} = \nu \circ \pi$ and $\bar{h} = h \circ \pi$. We claim that $L^*_{\bar{h}} \bar{\nu} = \bar{\nu}, L^*_{\bar{\phi}} \bar{h} = \bar{h}$. To see this note that

$$
\log \frac{dm}{dm \circ T} = \phi + \log h - \log h \circ T
$$

(because $f \mapsto h^{-1}L_{\phi}(hf)$ acts as the transfer operator of m). Let m_A denote the normalized restriction of m to A and $\overline{m} = m_A \circ \pi$. Then since $T_A = T^{\varphi_A}$,

$$
\log \frac{dm_A}{dm_A \circ T_A} = \sum_{i=0}^{\varphi_A - 1} \phi \circ T^i + \log h - \log h \circ T_A
$$

whence

(5)
$$
\log \frac{d\overline{m}}{d\overline{m} \circ \overline{T}} = \overline{\phi} + \log \overline{h} - \log \overline{h} \circ \overline{T}.
$$

Since m is T invariant, m_A is T_A invariant. It follows that \overline{m} is \overline{T} invariant, whence $L_{\log \vec{g}} 1 = 1$ where $\vec{g} = \log d\vec{m}/d\vec{m} \circ \vec{T}$. It follows from (5) that

$$
\sum_{\overline{T}y=x} e^{(\overline{\phi}+\log\overline{h}-\log\overline{h}\circ\overline{T})(y)}=1
$$

whence $L_{\phi}^- \overline{h} = \overline{h}$. We show that $L_{\phi}^* \overline{\nu} = \overline{\nu}$. Without loss of generality, $d\overline{\nu} =$ $\overline{h}^{-1} d\overline{m}$ (the only difference is a normalizing constant). Using (5) and the fact that $L_{\log \overline{q}}$ acts as the transfer operator of \overline{m} , we have that for every $f \in L^1(\overline{\nu})$,

$$
\int L_{\overline{\phi}} f d\overline{\nu} = \int \overline{h}^{-1} L_{\overline{\phi}} f d\overline{m} = \int L_{\log \overline{g}} (\overline{h}^{-1} f) d\overline{m} = \int f d\overline{\nu}
$$

as required.

It follows from Theorem 1 and the relations $L_{\overline{\phi}}\overline{h} = \overline{h}$, $L_{\overline{\phi}}^* \overline{\psi} = \overline{\nu}$ and $\overline{\nu}(\overline{h}) =$ $\nu(1_A h) < \infty$ that $\overline{\phi}$ is positive recurrent and that $P_G(\overline{\phi}) = 0$. Since $\overline{h} = h \circ \pi$ and $\pi(X) \subseteq A$, \overline{h} is uniformly bounded away from zero and infinity. It follows that $||L_{\overline{\phi}}1||_{\infty} < \infty$. By (2),

$$
\sup\left\{h_{\mu}(\overline{T})+\int\overline{\phi}\,d\mu:\mu\text{ is }\overline{T}\text{ invariant, }\mu(\overline{X})=1,\ \mu(-\overline{\phi})<\infty\right\}=P_G(\overline{\phi})=0.
$$

Since for every conservative invariant (possibly infinite) ergodic measure μ such that $\mu(A) < \infty$ and $\mu(-\phi) < \infty$ the measure $\overline{\mu} = \mu_A \circ \pi$ is a \overline{T} invariant ergodic probability measure such that

$$
\mu(A)\overline{\mu}(-\overline{\phi})=-\int_A \sum_{k=0}^{\varphi_A-1} \phi \circ T^k d\mu=\mu(-\phi)<\infty,
$$

we have that $h_{\mu}(T) + \mu(\phi) = \mu(A)[h_{\overline{\mu}}(\overline{T}) + \overline{\mu}(\overline{\phi})] \leq 0.$

We now assume that $\mu = m$ and that $m(-\phi) < \infty$, and show that $h_m(T)$ + $m(\phi) = 0$. \overline{X} clearly satisfies the big images property: $\exists b_1, \ldots, b_N \in \overline{S}$ such that for every $a \in \overline{S}$ there is some b_i such that $[a, b_i]$ is not empty (in fact for every $a, b \in \overline{S}$ [a, b] is non-empty). Since \overline{h} is uniformly bounded away from zero and infinity, \overline{m} is a Gibbs measure for $\overline{\phi}$ in the sense of Bowen [5]: there is some *global* constant $M > 1$ such that for every $\underline{a}_0, \ldots, \underline{a}_{n-1} \in \overline{S}$ and $x \in [\underline{a}_0, \ldots, \underline{a}_{n-1}] \subseteq \overline{X}$,

(6)
$$
\overline{m}[\underline{a}_0,\ldots,\underline{a}_{n-1}] = M^{\pm 1} \exp \sum_{k=0}^{n-1} \overline{\phi}(\overline{T}^k x)
$$

(see [18], Theorem 8). Let $\overline{\alpha} = {\{\alpha\} \colon \alpha \in \overline{S}\}\$ denote the natural partition of \overline{X} . By the continuity properties of $\overline{\phi}$ and by (6)

$$
H_{\overline{m}}(\overline{\alpha}) = -\sum_{[\underline{a}] \in \overline{\alpha}} \overline{m}[\underline{a}] \log \overline{m}[\underline{a}]
$$

\n
$$
\leq -\sum_{[\underline{a}] \in \overline{\alpha}} \overline{m}[\underline{a}] \frac{1}{\overline{m}[\underline{a}]} \int_{[\underline{a}]} \overline{\phi} d\overline{m} + \log M
$$

\n
$$
= -\int_{\overline{X}} \overline{\phi} d\overline{m} + \log M
$$

\n
$$
= -\frac{1}{m(A)} \int_{A} \sum_{k=0}^{\varphi_{A}-1} \phi \circ T^{k} dm + \log M
$$

\n
$$
= -\frac{1}{m(A)} \int \phi dm + \log M,
$$

whence $H_{\overline{m}}(\overline{\alpha}) < \infty$. Since $\overline{\alpha}$ is a generator with finite entropy, we have by the Rohlin formula [14] that

$$
h_{\overline{m}}(\overline{T}) = -\int \log \frac{d\overline{m}}{d\overline{m} \circ \overline{T}} d\overline{m} = -\int \overline{\phi} d\overline{m} = -\frac{1}{m(A)} \int \phi dm.
$$

Multiplying both sides by $m(A)$ we have that $h_m(T) = -m(\phi)$ as required. \blacksquare

Remark 4: It follows from the proof that m is the unique up to a constant conservative ergodic invariant measure such that $H_{\overline{m}}(\overline{\alpha}) < \infty$ and $h_m(T) =$ $m(P_G(\phi) - \phi)$, since by a trivial generalization of an argument of Bowen, if there exists a probability measure which is Gibbs in the sense of Bowen, with a generator which has finite entropy, then this measure is the unique solution of the variational problem (see [5]).

The problem with the last theorem is that frequently both $h_m(T)$ and $m(P_G(\phi) - \phi)$ are infinite. In this situation, the sum $h_m(T) + m(\phi - P_G(\phi))$ is meaningless. The following theorem completes our discussion by treating this case as well.

Set

$$
I_{\mu}=-\sum_{a\in S}1_{[a]}\log\mu([a]|T^{-1}\mathcal{B}).
$$

This is well defined for every μ which is finite on partition sets. The following theorem generalizes theorem 7 in [18] (see also [13], [27], [28]).

THEOREM 3: Let X be topologically mixing and ϕ locally Hölder continuous with finite Gurevic pressure. Assume that ϕ is *recurrent*, let h and ν be as in *Theorem 1* and *set*

$$
\phi' = \phi + \log h - \log h \circ T.
$$

Then for every conservative invariant measure μ which is finite on partition sets, $I_{\mu} + \phi' - P_G(\phi')$ is one-sided integrable with respect to μ and

(7)
$$
-\infty \leq \int (I_{\mu} + \phi' - P_G(\phi')) d\mu \leq 0;
$$

if $\mu \sim \mu \circ T$ *, the integral in (7) is equal to zero iff* μ *is proportional to h dv.*

Proof: Fix a conservative invariant measure μ finite on partition sets and set

$$
g_{\mu} = d\mu/d\mu \circ T,
$$

where $\mu \circ T$ is given by (1). Recall that the transfer operator of μ is given by $L_{\log q_u}$ and that

$$
\mathbf{E}_{\mu}(f|T^{-1}\mathcal{B})=(L_{\log g_{\mu}}f)\circ T.
$$

It follows that

 $I_u = -\log g_u.$

Set $g = \lambda^{-1} e^{\phi} h / h \circ T$ where $\lambda = \exp P_G(\phi)$. One checks that $\sum_{T y = x} g(y) = 1$ and that $\sum_{T_u=x} g_\mu(y) = 1$ for μ almost all $x \in X$ (the first equality follows from the equation $L_{\phi}h = \lambda h$; the second follows from the identity

$$
\mu(f\sum_{Ty=x}g_{\mu}(y))=\mu(L_{\log g_{\mu}}(f\circ T))=\mu(f),
$$

which is satisfied for every $f \in L^1(\mu)$.

We show that $I_{\mu} + \phi' - P_G(\phi')$ is one-sided integrable. We use the notation $\psi^+ = \psi 1_{\{\psi > 0\}}$ and show that $(I_\mu + \phi' - P_G(\phi'))^+$ is integrable. Fix a sequence of measurable sets $A_n \nearrow X$ such that $0 < \mu(A_n) < \infty$. Fix an arbitrary integrable function $f \geq 0$. Set

$$
A_{s,t,n}=A_n\cap [s
$$

Using the inequality $\log x \leq x - 1$ we see that for every s, t, n ,

$$
\int_{A_{s,t,n}} (I_{\mu} + \phi' - P_G(\phi'))^+ f \circ T d\mu = \int (-\log g_{\mu} + \log g)^+ 1_{A_{s,t,n}} f \circ T d\mu
$$

\n
$$
= \int [\log(g/g_{\mu})]^+ 1_{A_{s,t,n}} f \circ T d\mu
$$

\n
$$
\leq \int \left(\frac{g}{g_{\mu}} - 1\right)^+ 1_{A_{s,t,n}} f \circ T d\mu
$$

\n
$$
= \int f \circ T \cdot \mathbf{E}_{\mu} \left(\left(\frac{g}{g_{\mu}} - 1\right)^+ 1_{A_{s,t,n}} \Big| T^{-1} B\right) d\mu
$$

\n
$$
= \int f \circ T \sum_{Ty = Tx} g_{\mu}(y) 1_{A_{s,t,n}}(y) \left(\frac{g(y)}{g_{\mu}(y)} - 1\right)^+ d\mu
$$

\n
$$
= \int f \circ T \sum_{Ty = Tx} 1_{A_{s,t,n}}(y) [g(y) - g_{\mu}(y)]^+ d\mu.
$$

The last integrand is bounded by $f \circ T$. Since this is true for all s, t, n the integral $\mu[(I_{\mu} + \phi' - P_G(\phi'))^+]$ is finite. This implies that $I_{\mu} + \phi' - P_G(\phi')$ is one-sided integrable. Applying the same calculation to $I_{\mu} + \phi' - P_G(\phi')$ rather than $(I_{\mu} + \phi' - P_{G}(\phi'))^{+}$ yields the inequality

$$
\int_{A_{s,t,n}} f\circ T(I_{\mu}+\phi'-P_G(\phi')) d\mu \leq \int f\circ T \sum_{Ty=Tx} 1_{A_{s,t,n}}(y)[g(y)-g_{\mu}(y)] d\mu.
$$

The integrand on the left is bounded in absolute value by the integrable function $f \circ T$. Its pointwise limit when $s \to 0$, $t, n \to \infty$ is zero, because $\sum_{T_u=T_x} [g(y) - g_\mu(y)] = 0$. We may therefore apply the dominated convergence theorem and deduce

$$
\int f\circ T[I_{\mu}+\phi'-P_G(\phi')] d\mu\leq 0.
$$

Since f was arbitrary, (7) follows.

Assume that $\mu \sim \mu \circ T$. We show that the integral in (7) is equal to zero if and only if $d\mu$ is proportional to *h dv*. If $d\mu$ is proportional to *h dv* the integrand in (7) is identically zero because then $I_{\mu} = -\log g$, where $g = \lambda^{-1} e^{\phi} h / h \circ T$ (this follows from the fact that the transfer operator of any measure proportional to *hdv* is given by $f \mapsto \lambda^{-1} h^{-1} L_{\phi}(hf)$. We show the reverse implication. Assume that μ is such that $\mu \sim \mu \circ T$ and that there is an equality in (7). A close inspection of the proof shows that this is possible only if $\log(g/g_u) = (g/g_u) - 1 \mu$ almost everywhere. This is possible only if $g_{\mu} = g \mod \mu$. Since $\mu \sim \mu \circ T$, this implies that $g_{\mu} = g \mod \mu$ oT. It follows that $L_{\log g}$ is the transfer operator of μ . Consider

the function $\psi = \log g = \phi + \log h - \log h \circ T - \log \lambda$. This is a locally Hölder continuous function (because by Remark 2 after Theorem 1, $\log h$ and $\log h \circ T$ are both locally Hölder continuous). It is also clear that $L_{\psi} 1 = 1, L_{\psi}^* \mu = \mu$ whence ψ is recurrent. Since it is also true that $L^*_{\psi}(hd\nu) = L^*_{\log q}(hd\nu) = hd\nu$ we have by the convergence part of Theorem 1 that μ and $h d\nu$ are proportional. **|**

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Throughout the proof we assume that X is a topologically mixing countable Markov shift and that $\phi: X \to$ **is locally Hölder continuous with finite Gurevic pressure. Set**

$$
B_k = \exp \sum_{n=k+1}^{\infty} V_n(\phi) \quad (k=1,2,\ldots).
$$

Local Hölder continuity implies that $\forall n \geq 1$, $B_n < \infty$ and $B_n \searrow 1$. The following inequality will be used constantly:

$$
(8) \t x_0 = y_0, \ldots, x_{n-1} = y_{n-1} \Rightarrow \forall m \leq n-1 \quad (e^{\phi_m(x)} = B_{n-m}^{\pm 1} e^{\phi_m(y)}).
$$

A frequently used corollary is that $\forall x_a \in [a],$

$$
Z_n(\phi, a) = B_1^{\pm 1}(L_\phi^n 1_{[a]})(x_a).
$$

The reader should note that the assumption that the Gurevic pressure is finite implies that *all* of the $Z_n(\phi, a)$ are finite (because by local Hölder continuity $\exists C > 1$ such that $\forall m, n, C^{-m} Z_n(\phi, a)^m < Z_{mn}(\phi, a)$. This assumption also implies that the L_{ϕ}^{n} are all defined on bounded functions supported inside a finite union of partition sets.

3.1 EXISTENCE OF ν .

PROPOSITION 1: If there exists $\lambda > 0$ and a conservative σ -finite measure ν which is finite on some cylinder such that $L^*_{\phi} \nu = \lambda \nu$ then ϕ is recurrent and $\lambda = e^{P_G(\phi)}$.

Proof: Choose a cylinder [b] with finite positive measure. It is easy to verify that $\lambda^{-1}L_{\phi}$ acts as the transfer operator of ν , whence by conservativity $\sum_{n>1} \lambda^{-n} L_{\phi}^{n} 1_{b} = \infty \nu$ -a.e. on [be [2]). Thus, for ν -almost all $x \in [b]$

$$
\sum_{n=1}^{\infty} \lambda^{-n} Z_n(\phi, b_0) \geq B_1^{-1} \sum_{n=1}^{\infty} \lambda^{-n} (L_{\phi}^n 1_{\lfloor \underline{b} \rfloor})(x) = \infty.
$$

298 C.M. SARIG Isr. J. Math.

We show that $\lambda = e^{P_G(\phi)}$. It follows from what we have just proved that $\lambda \leq e^{P_G(\phi)}$ because the radius of convergence of the series $\sum_{k>1} Z_k(\phi, b_0) x^k$ is $e^{-P_G(\phi)}$. Consider $Z_n(\phi, \underline{b}) = \sum_{T^n x = x} e^{\phi_n(x)} 1_{[b]}(x)$. By local Hölder continuity,

$$
\lambda^{-n} Z_n(\phi, \underline{b}) \leq B_1 \bigg[\frac{1}{\nu[\underline{b}]} \int_{[\underline{b}]} \left(\lambda^{-n} L_{\phi}^n 1_{[\underline{b}]} \right) d\nu \bigg] \leq B_1.
$$

By topological mixing and local Hölder continuity $n^{-1} \log Z_n(\phi, \underline{b}) \rightarrow P_G(\phi)$, whence $\lambda \geq e^{P_G(\phi)}$.

PROPOSITION 2: If ϕ is recurrent there exist $\lambda > 0$ and a conservative measure ν , finite and positive on cylinders, such that $L^*_{\phi}\nu = \lambda \nu$.

Proof: Fix $a \in S$, set $\lambda = e^{P_G(\phi)}$ and let $a_n = \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a)$. For every $y \in X$ let δ_y denote the probability measure concentrated on $\{y\}$. Fix a periodic point $x_a \in [a]$ and set for every $b \in S$

$$
\nu_n^b = \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{T^k y = x_a} e^{\phi_k(y)} 1_{[b]}(y) \delta_y.
$$

Clearly $\nu_n^b(X) = \nu_n^b([b]) = \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} (L^k_{\phi}1_{[b]}) (x_a)$. It follows from local Hölder continuity, topological mixing and the definition of the Gurevic pressure that for every $b \in S$

$$
0<\lim_{n\to\infty}\nu_n^b(X)\leq \lim_{n\to\infty}\nu_n^b(X)<\infty.
$$

(It is enough to show that $a_n^{-1} \sum_{k=1}^n \lambda^{-k} Z_n(\phi, b)$ is bounded away from zero and infinity for every b. To see this note that $\exists C, c$ such that $Z_n(\phi, b)$ < $CZ_{n+c}(\phi, a)$ and that $\forall k \ \lambda^{-k} Z_k(\phi, a) < 2B_1$. The last inequality follows from $\lambda^{-km}Z_{km}(\phi,a) > B_1^{-m}(\lambda^{-k}Z_k(\phi,a))^m.$

We show how to choose a subsequence $\{m_k\}_{k>1}$ such that for every $b \in S$, $\{\nu_{m_k}^b\}$ is w^* convergent, and show that the non-trivial measure ν given by $|\nu_{m_k}^{b} \stackrel{w^*}{\rightarrow} \nu|_{[b]}$ satisfies $L^*_{\phi} \nu = \lambda \nu$. Since X is not compact, to do this we have to prove that $\{\nu_{m_k}^b\}_{k\geq 1}$ are all tight, i.e.,

 $\forall b \forall \epsilon > 0 \ \exists F = F_{b,\epsilon}$ compact such that $\forall n \ \nu_n^b(F^c) < \epsilon$.

It follows from the topological mixing of X that if $\{\nu_n^b\}_{n\geq 1}$ is tight for some b, then it is tight for *every b*. Therefore, we may restrict ourselves to the case $b = a$ and set $\nu_n^a = \nu_n$.

STEP 1: We show that $\sum_{k>1} \lambda^{-k} Z_k^*(\phi, a) < \infty$. To see this, set $T(x) =$ $1 + \sum_{k>1} Z_k(\phi, a) x^k$ and $R(x) = \sum_{k>1} Z_k^*(\phi, a) x^k$. ify that $\forall x \in (0, \lambda^{-1}), T(x) - 1 = B_1^{\pm 2}R(x)T(x).$ $R(x) \leq B_1^2$ whence $R(\lambda^{-1}) < \infty$. It is not difficult to ver-Therefore $\forall x \in (0, \lambda^{-1}),$

STEP 2: Set

(9)
$$
\tau_1(x) = \begin{cases} \inf\{n \geq 1 : T^n x \in [a]\}, & x \in [a] \\ 0, & x \notin [a] \end{cases}
$$

where inf $\varphi = \infty$. Define by induction $\tau_n(x) = \tau_1(T^{\tau_1(x)+\cdots+\tau_{n-1}(x)}x)$ if $\tau_{n-1}(x)$ ∞ and $\tau_n(x) = \infty$ else. Note that $\tau_n > 0$ only if $x_0 = a$. For every sequence of natural numbers $\{n_i\}_{i\geq 1}$ set

$$
R(\{n_i\}) = \{x \in [a]: \forall i \ \tau_i(x) \leq n_i\}.
$$

We show that $\forall \varepsilon > 0 \; \exists \{n_i\}$ such that $\forall n \; \nu_n(R\{n_i\}^c) < \varepsilon$. To see this set

$$
Z_{k_1,\ldots,k_m}^* = \sum \{e^{\phi_{k_1+\cdots+k_m}(x)}: x_0 = a; T^{k_1+\cdots+k_m} x = x; \forall j \leq m \; \tau_j(x) = k_j\}.
$$

For ${n_i}_{i>1}$ s.t. n_i is larger than the period of x_a ,

un(R{ni} c) <_ O0 Z ~'-[~ > n,] i=1 = 1E A-k Z e~(U)l[~'>n'] (y) i=1 *an* k=l *Tkll=Za* ~o=a -<~a--~l ~)~-k E E e*'(U)l[v' <N- ",(u)=k,] (y) i----1 k=nt +1 *Tky=za hl'4"'"+kN=k* ~O=a *ki>ni,lV(_ k* n *< B~ L ~ ~-~ F_, z;, ~,_,z;,z;,+, ~ -- 1 an k=n,+l klT'"+kN~k k,>ni,N(_k O0 O0 n* an i=l ki=niq-1 *k.=ki kl+'"+kN=k* N_(k ,~ **ZL ~ 1-(k-k')Zk-k, (C, a)** i=1 ki=ni+l *k=ki* O0 O0 **--BI Z Z** A Zk,. i----1 *ki=ni+l*

It remains to apply the previous step and choose n_i such that

$$
\sum_{k_i=n_i+1}^{\infty} \lambda^{-k_i} Z_{k_i}^* < \frac{\varepsilon}{2^i B_1^5}.
$$

STEP 3: Fix ${n_i}_i$ such that $\forall n$

$$
\nu_n(R\{n_i\}^c)<\varepsilon.
$$

For every sequence of natural numbers ${k_i}$ set

$$
S({k_i}) = {x \in [a]: \forall i \tau_i(x) = k_i}.
$$

We show that for every $\varepsilon > 0$ there exists a compact set $F \subseteq [a]$ such that

(10)
$$
\forall i \ k_i \leq n_i \Rightarrow \forall n \ \nu_n(F^c \cap S\{k_i\}) \leq \varepsilon \nu_n(S\{k_i\}).
$$

This is enough to prove tightness, because (10) implies that for every n ,

$$
\nu_n(F^c) \leq \varepsilon (1 + \nu_n(R))
$$

and we already know that the total mass of ν_n is uniformly bounded from above. The F we will construct will be of the form

$$
F = \{x \in [a] : \forall i \ x_i \le N_i\}
$$

where $N_i \in S$ (we are using an order on S induced by the identification $S \approx N$). Clearly, this is a compact set. We show how to choose $\{N_i\}$. Set

$$
Z_k^*(N) = \sum \{e^{\phi_k(x)} : x \in [a]; T^k x = x \; ; \; \tau_1(x) = k; \exists i \; x_i > N \}.
$$

Obviously, $Z^*_k(N) \searrow 0$ as $n \to \infty$. For every *i*, we choose N_i in a way such that for every $k \leq n_i$

$$
Z_k^*(N_i) \leq \frac{\varepsilon}{2^i B_1^7} Z_k^*.
$$

We make sure that $\{N_i\}$ are chosen in an increasing way and that

$$
N_1>\sup_{i\geq 0}\{x_a(i)\}
$$

(recall that x_a was chosen to be periodic, so its coordinates are bounded).

Fix $\{k_i\} \leq \{n_i\}$ such that $\nu_n(S\{k_i\}) > 0$. Fix $N = N(n, \{k_i\})$ such that $k_1 + \cdots + k_N \geq n$. Since $N_i > \sup\{x_a(i)\} \geq a$,

$$
\nu_{n}(F^{c} \cap S\{k_{i}\}) \leq \sum_{i=1}^{N} \nu_{n} \left\{ x \in S\{k_{i}\}: \exists j \in \left(\sum_{m=1}^{i-1} k_{m}, \sum_{m=1}^{i} k_{m}\right) x_{j} > N_{j} \right\}
$$

\n
$$
\leq \sum_{i=1}^{N} \nu_{n} \left\{ x \in S\{k_{i}\}: \exists j \in \left(\sum_{m=1}^{i-1} k_{m}, \sum_{m=1}^{i} k_{m}\right) x_{j} > N_{i} \right\}
$$

\n
$$
\leq B_{1}^{3} \sum_{i=1}^{N} \frac{1}{a_{n}} \sum_{l=i}^{N} \lambda^{-(k_{1} + \cdots + k_{l})} Z_{k_{1},...,k_{i-1}}^{*} Z_{k_{i}}^{*}(N_{i})
$$

\n
$$
\leq B_{1}^{6} \sum_{i=1}^{N} \frac{\varepsilon}{2^{i} B_{1}^{7}} \left(\frac{1}{a_{n}} \sum_{l=i}^{N} \lambda^{-(k_{1} + \cdots + k_{l})} Z_{k_{1},...,k_{l}}^{*} 1_{s(\{k_{j}\}_{j>1})}(x_{a}) \right)
$$

\n
$$
\leq \varepsilon \nu_{n}(S\{k_{i}\}).
$$

Tightness is proved.

By tightness, there exists a subsequence m_k such that $\forall b \in S$, $\{\nu_{m_k}^b\}_{k>1}$ is w^{*}-convergent. We denote its limit by ν^b and set $\nu = \sum_{b \in S} \nu^b$. It is not difficult to check that

$$
\forall [\underline{b}] \; 0 < \nu[\underline{b}] < \infty.
$$

We show that $L^*_{\phi} \nu = \lambda \nu$. By recurrence, $a_n \nearrow \infty$. A standard calculation shows that for every $[\underline{b}]$ and *N*, $\nu(1_{[x_0 < N]}L_{\phi}1_{[b]}) = \lambda \nu(1_{[x_1 < N]}1_{[b]})$. It follows from the Lebesgue monotone convergence theorem that $\nu(L_{\phi} 1_{[b]}) = \lambda \nu[\underline{b}]$. Since $[\underline{b}]$ was arbitrary, we have that $L^*_{\phi} \nu = \lambda \nu$.

We show that ν is conservative. One checks that the transfer operator of ν is $T = \lambda^{-1}L_{\phi}$. To prove conservativity it is enough to show that for some positive integrable function f , $\sum_{k>1} \hat{T}^k f = \infty$ almost everywhere. Set $f = \sum_{a \in S} f_a 1_{[a]}$ where $f_a > 0$ are chosen so that $\nu(f) < \infty$. For every $a \in S$ and $x \in [a]$

$$
\sum_{k=1}^{\infty}\lambda^{-k}(L_{\phi}^{k}f)(x)\geq B_{1}^{-1}f_{a}\sum_{k=1}^{\infty}\lambda^{-k}Z_{k}(\phi,a)=\infty.
$$

Conservativity follows. \blacksquare

3.2 THE SCHWEIGER PROPERTY. Let X be a topological Markov shift and μ be a measure supported on X such that $\mu \sim \mu \circ T^{-1}$ and $\mu \sim \mu \circ T$. μ is said to have the **Schweiger property** (see [3]) if there exists a collection of cylinders \mathcal{R} such that:

- 1. the members of R have finite positive measures and $\bigcup \mathcal{R} = X \mod \nu$;
- 2. for every $[\underline{b}] \in \mathcal{R}$ and arbitrary cylinder $[\underline{a}]$, if $[\underline{a}, \underline{b}] \neq \emptyset$ then $[\underline{a}, \underline{b}] \in \mathcal{R}$;
- 3. there exists a constant $C > 1$ such that for every $[b] \in \mathcal{R}$ of length n and $\mu \times \mu$ almost all $x, y \in [\underline{b}] \times [\underline{b}]$

(12)
$$
\frac{d\mu}{d\mu \circ T^n}\Big|_{\underline{[b]}}(x) = C^{\pm 1}\frac{d\mu}{d\mu \circ T^n}\Big|_{\underline{[b]}}(y).
$$

Aaronson, Denker and Urbanski proved in [3] that if μ has the Schweiger property, is supported on a topologically mixing topological Markov shift, and is conservative, then:

- 1. μ is exact (hence ergodic);
- 2. there exists a σ -finite invariat measure $m \sim \mu$ such that $\log(\frac{dm}{d\nu})$ is bounded on every $B \in \mathcal{R}$;
- 3. every $[b] \in \mathcal{R}$ is a Darling-Kac set for m with a continued fraction mixing return time process (see [3] for definitions and implications);
- 4. m is pointwise dual ergodic: there exist $a_n > 0$ such that for every $f \in L^1(m)$

$$
\frac{1}{a_n}\sum_{k=1}^n \hat{T}^k f \underset{n\to\infty}{\longrightarrow} m(f) \text{ a.e.,}
$$

where \hat{T} is the transfer operator of m.

R6nyi's property states that (12) holds for *all* cylinders (see [2]). It follows from local Hölder continuity that ν satisfies Rényi's property with respect to the partition generated by cylinders of length two. It is not true in general, however, that ν satisfies this property with respect to all cylinders, including those of length one (see Example 2 below). In order to obtain information on cylinders of length one as well, we need the following lemma, which was inspired by [3]. For every $c \in S$ set $\mathcal{R}_c = \{ [b_0, \ldots, b_{n-1}] : n \in \mathbb{N}, b_{n-1} = c \}$. Note that $[c] \in \mathcal{R}_c$.

LEMMA 1: Let X be topologically mixing and ϕ locally Hölder continuous. Sup*pose that u* is a *conservative* measure, *[inite* and *positive on cylinders such that* $L^*_{\phi} \nu = \lambda \nu$. Then $\forall c \in S$ there exists a density function $q = q^{(c)} \colon X \to (0, \infty)$ *such that* $d\nu_c = q^{(c)} d\nu$ *has the Schweiger property with respect to* \mathcal{R}_c *. q can be chosen to be constant* on *partition* sets.

Proof: For every $1 \leq m \leq n-1$ and $[\underline{b}]$ of length n set

$$
\phi_m(\underline{b}) = \inf \{ \phi_m(x) : x \in [\underline{b}] \}.
$$

By (8), $\forall x \in [\underline{b}] \phi_m(x) = \phi_m(x_0, \ldots, x_{n-1}) \pm \log B_{n-m}$. Set $q(x) = q^{(c)}(x) = q_{x_0}$ where

$$
q_b = \begin{cases} e^{\phi(c,b)}, & [b] \subseteq T[c] \\ 1, & \text{else} \end{cases}
$$

and set $d\nu_c = q d\nu$. A calculation shows that $d\nu_c \circ T^n = q_c \circ T^n d\nu \circ T^n$ whence

$$
\frac{d\nu_c}{d\nu_c\circ T^n} = \frac{q_c}{q_c\circ T^n} \lambda^{-n} e^{\phi_n}.
$$

It follows that for every $x \in [b_0, \ldots, b_{n-1}]$ such that $b_{n-1} = c$

$$
\frac{d\nu_c}{d\nu_c \circ T^n}(x) = \frac{q_{b_0}}{q_{x_n}}e^{\phi_n(x)} = B_1^{\pm 1}\lambda^{-n}q_{b_0}e^{\phi_{n-1}(x)}.
$$

Thus (12) is proved.

Obviously for every $[b]$ in \mathcal{R}_c and for every $[a]$, $[a, b]$ is either empty or in \mathcal{R}_{c} . We show that $X = \bigcup \mathcal{R}_{c}(\text{mod }\nu_{c})$. Assume this were not the case. Then $\exists a \in S \ \exists A \subseteq [a]$ measurable of positive measure such that $\nu_c(A \cap \bigcup \mathcal{R}_c) = 0$. By topological mixing there exists a $[c] \subseteq [c]$ such that $[c, a] \neq \emptyset$. Choose such a c of minimal length. Set $[c, A] = [c] \cap T^{-|c|}A$ where $[c]$ denotes the length of $[c]$. Then $[c, A] \neq \emptyset$ and

$$
\int_{[\underline{c},A]} \frac{d\nu_c \circ T^{|\underline{c}|}}{d\nu_c} d\nu_c = \nu_c(A) > 0
$$

whence $\nu_c[\underline{c}, A] > 0$. Since $|\underline{c}|$ is minimal,

$$
[c, A] \subseteq [c] \setminus T^{-1}(\cup \mathcal{R}_c) = [c] \setminus \bigcup_{n \geq 1} T^{-n}[c],
$$

so by conservativity $\nu_c[\underline{c}, A] = 0$.

Example 2: Set $S = \{a, b, 1, 2, 3, ...\}$ and $\mathbf{A} = (t_{ij})_{S \times S}$, where $t_{ij} = 1$ if and only if $i \in \{a, b\}, j \in \mathbb{N}$ or $i \in \{a, b\}, j = i$ or $i = 1, j \in \{a, b\}$ or $i \neq a, b, 1$ and $j = i - 1$. Set $\phi(x) = \log p_{x_0, x_1}$ where $p_{aa} = p_{bb} = f_0$ and for all $i \in \mathbb{N}$ and $j \in S$, $p_{ai} = f_i$, $p_{bi} = f'_i$, $p_{ij} = 1$ where f_i , and f'_i will be determined later. Then $Z_{n+1}^*(\phi, 1) = \sum_{k=0}^{n-1} (f_{n-k} + f'_{n-k}) f_0^k$ and

$$
Z_n(\phi, 1) = Z_n^*(\phi, 1) + \sum_{k=1}^{n-1} Z_{n-k}^*(\phi, 1) Z_k(\phi, k).
$$

Now choose $f_0 = 1/4$, $f_i = C/2^i$ and $f'_i = C/4^i$, where $C > 0$ is a constant such that $\sum_{n>1} Z^*_{k}(\phi, 1) = 1$. It follows from the renewal theorem that $Z_{n}(\phi, 1)$ tends to $1/\sum_{n>1} nZ_n^*(\phi,1) > 0$ as n tends to infinity. Thus $P_G(\phi) = 0$ and ϕ

is positive recurrent. Let ν be the corresponding eigenmeasure (the existence of which is guaranteed by Proposition 2). Then there is no density vector $\{p_k\}$ such that the resulting measure satisfies Rényi's condition because such a vector must satisfy $p_k \n\times p_{ak}, p_{bk}$ whereas $p_{ak} \n\times p_{bk}$.

3.3 EXISTENCE OF h AND $\{a_n\}_n$.

PROPOSITION 3: If ϕ is recurrent then $\exists h > 0$ and $\exists \{a_n\}_{n=1}^{\infty}$ such that $L_{\phi}h = \lambda h$ and such that for every cylinder $[b]$ and $x \in X$

$$
\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} (L_{\phi}^k 1_{[b]}) (x) \xrightarrow[n \to \infty]{} h(x) \nu[\underline{b}].
$$

Furthermore, h is bounded away from *zero and infinity on partition sets,* log h and $\log h \circ T$ are *locally Hölder continuous, and every cylinder is a Darling-Kac* set for $dm = h dv$ with a continued fraction mixing return time process.

Proof: Since ϕ is recurrent, there exists a conservative measure ν , finite and positive on cylinders, such that $L^*_{\phi} \nu = \lambda \nu$. Fix an arbitrary $c \in S$ and set $\mathcal{R}_c = \{ [b_0, \ldots, b_{n-1}] : n \in \mathbb{N}, b_{n-1} = c \}.$ By Lemma 1, $\exists \nu_c \sim \nu$ with the Schweiger property with respect to \mathcal{R}_c such that $d\nu_c/d\nu$ is constant on partition sets. By the results cited in the last section, there exists an exact invariant measure m which is equivalent to ν_c , hence also to ν . Its derivative $dm/d\nu$ is bounded away from zero and infinity on members of \mathcal{R}_c (because $d\nu_c/d\nu$ is constant on partition sets). This measure is pointwise dual ergodic: there exist $a_n > 0$ such that for every $f \in L^1(m)$

(13)
$$
\frac{1}{a_n} \sum_{k=1}^n \hat{T}^k f_{n \to \infty} \int f \, dm \text{ a.e.}
$$

Set $h = dm/d\nu$. Since ν is equivalent to m and m is exact, ν is conservative ergodic and can only have one invariant density (up to a constant). Thus h and m are independent of c. It also follows from (13) that $\{a_n\}$ is independent of c (up to a constant and asymptotic equivalence). The results of the previous section imply that every member of \mathcal{R}_c is a Darling-Kac set for m with a continued fraction mixing return time process. Since m is independent of c and c is arbitrary, this is true for every member of $\bigcup_{c \in S} \mathcal{R}_c$, i.e. for all cylinders. The same reasoning shows that h is bounded away from zero and infinity on every cylinder. Thus, since ν is positive and finite on cylinders, so is m.

We show that h and ${a_n}$ are the required eigenfunction and sequence. The transfer operator of dm is given by $\hat{T}f = \lambda^{-1}h^{-1}L_{\phi}(hf)$ (because $dm = h d\nu$

and the transfer operator of ν is given by $\lambda^{-1}L_{\phi}$). Thus, for every cylinder [b]

(14)
$$
\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} L_{\phi}^k 1_{[b]} = \frac{1}{a_n} h \sum_{k=1}^n \hat{T}^k (h^{-1} 1_{[b]}).
$$

For every cylinder $[\underline{b}]$ the function $h^{-1}1_{[b]}$ is m-integrable (because h is bounded away from zero on cylinders). Thus (14) implies that for m-almost every $x \in X$ for every cylinder [b]

(15)
$$
\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} (L_{\phi}^k 1_{[b]}) (x) \underset{n\to\infty}{\longrightarrow} h(x) \nu[\underline{b}].
$$

Since ν is positive on cylinders, and $m \sim \nu$, there is a dense set of points $x \in X$ for which (15) is valid for every cylinder [be]. By (8), $\forall m \geq 1 \forall k \ V_m[\log(L_{\phi}^k 1_{[b]})]$ < $\log B_m$ and we have that the logarithm of each of the summands in the left hand side of (15) is uniformly continuous in x. It follows that h has a version for which (15) holds *everywhere* for every cylinder [b]. This version must satisfy

(16) Vm >_ 1 Vm[logh] < logBrn

whence $\log h$ and $\log h \circ T$ are locally Hölder continuous. We see, again, that h is uniformly bounded away from zero and infinity on partition sets, because the last estimation is also valid for the case $m = 1$,

It is now possible to show that h is an eigenfunction. Applying L_{ϕ} on both sides of (15) (and noting that by conservativity $a_n \to \infty$) it is easy to see that $L_{\phi}h \leq \lambda h$. Set $f = h - \lambda^{-1}L_{\phi}h$. This is a non-negative function which satisfies $\sum_{k>0} \lambda^{-k} L_{\phi}^{k} f < \infty$. Since ν is ergodic conservative with transfer operator $\lambda^{-1}L_{\phi}$, this is impossible unless $f = 0$ *v*-a.e. Since f is continuous and *v* supported everywhere, $f = 0$ whence $L_{\phi}h = \lambda h$.

3.4 IDENTIFICATION OF $\{a_n\}_n$.

PROPOSITION 4: Let m and ${a_n}_n$ be as in Proposition 3. Then for every $a \in S$

$$
a_n \sim \frac{1}{m[a]} \sum_{k=1}^n \lambda^{-k} Z_n(\phi, a).
$$

Proof: Let \hat{T} denote the transfer operator of m. For every cylinder $[\underline{a}]$ of length N set $Z_n(\phi, \underline{a}) = \sum_{T^n x = x} e^{\phi_n(x)} 1_{[\underline{a}]}(x)$ and choose some $x_{\underline{a}} \in [\underline{a}]$. By (16), for every $N \geq 1$ and almost all $x_{\underline{a}} \in [\underline{a}]$

(17)
$$
\lambda^{-n} Z_n(\phi, \underline{a}) = B_N^{\pm 1}(\lambda^{-n} L_{\phi}^n \mathbf{1}_{[\underline{a}]})(x_{\underline{a}}) = B_N^{\pm 2}(\hat{T}^n \mathbf{1}_{[\underline{a}]})(x_{\underline{a}}).
$$

By (13)

(18)
$$
\lim_{n \to \infty} \lim_{n \to \infty} \left[\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, \underline{a}) \right] = B_N^{\pm 2} m[\underline{a}].
$$

The idea is to sum over $[a] \subseteq [a]$ and deduce that

$$
\lim_{n \to \infty}, \overline{\lim}_{n \to \infty} \left[\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a) \right] = B_N^{\pm 2} m[a]
$$

which implies, since N is arbitrary, that both limits coincide and are equal to *m[a].* We need a regularity argument to deal with the possibility that there may be an infinite number of $[q] \subseteq [a]$ such that $|q| = N$.

Let $\varepsilon > 0$ and $F = F_{\varepsilon}$ be a compact such that $m([a] \backslash F) < \varepsilon$. We denote by $[a] \cap \alpha_0^{N-1}$ the set of all cylinders of length N that are included in $[a]$. Then,

$$
\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a) = \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{\substack{[a] \subseteq [a] \cap \alpha_0^{N-1} \\ \vdots \\ [a] \subseteq [a] \cap \alpha_0^{N-1}}} Z_k(\phi, \underline{a})
$$

$$
= \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{\substack{[a] \subseteq [a] \cap \alpha_0^{N-1} \\ \vdots \\ [a] \subseteq [a] \cap \alpha_0^{N-1}}} Z_k(\phi, \underline{a})
$$

$$
+ \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{\substack{[a] \subseteq [a] \cap \alpha_0^{N-1} \\ \vdots \\ [a] \subseteq [a] \cap F}} Z_k(\phi, \underline{a}).
$$

Using (16) , (17) and the pointwise dual ergodicity of m, we have that for almost every $z_a \in [a]$

$$
\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{\substack{[\underline{a}] \subseteq [a] \cap a_0^{N-1} \\ [\underline{a}] \subseteq [a] \setminus F}} Z_k(\phi, \underline{a}) \leq B_N^2 \frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} \sum_{\substack{[\underline{a}] \subseteq [a] \cap a_0^{N-1} \\ [\underline{a}] \subseteq [a] \setminus F}} [h^{-1} L_{\phi}^k(h1_{[\underline{a}]})](x_{\underline{a}})
$$

$$
\leq B_N^2 B_1 \frac{1}{a_n} \sum_{k=1}^n [\lambda^{-k} h^{-1} L_{\phi}^k(h1_{[\underline{a}] \setminus F})](z_a)
$$

$$
\leq B_N^2 B_1 \frac{1}{a_n} \sum_{k=1}^n (\widehat{T}^k 1_{[\underline{a}] \setminus F})(z_a)
$$

$$
\underset{n \to \infty}{\longrightarrow} B_N^2 B_1 m([\underline{a}] \setminus F).
$$

Thus,

$$
\frac{1}{a_n}\sum_{k=1}^n \lambda^{-k} Z_k(\phi, a) = \sum_{\substack{|\underline{a}| \subseteq [a] \cap \alpha_0^{N-1} \\ |\underline{a}| \cap F \neq \emptyset}} \left[\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, \underline{a}) \right] + O(\varepsilon).
$$

The sum on the right is finite, because F is compact. It follows from this and (18) that

$$
\underline{\lim}_{n\to\infty}, \overline{\lim}_{n\to\infty} \left[\frac{1}{a_n} \sum_{k=1}^n \lambda^{-k} Z_k(\phi, a) \right] = B_N^{\pm 2} m \Bigg(\bigcup_{\substack{[\underline{a}] \subseteq [a] \cap \phi_0^{N-1} \\ [\underline{a}] \cap F_{\epsilon} \neq \emptyset}} [\underline{a}] \Bigg) + O(\epsilon).
$$

Letting ε tend to zero and then N tend to infinity, we have that the upper and lower limits coincide and are equal to $m[a]$. \blacksquare

3.5 POSITIVE RECURRENCE AND NULL RECURRENCE. Throughout this subsection we assume that X is topologically mixing, ϕ is locally Hölder continuous and recurrent and that λ , ν and h are its corresponding eigenvalue, eigenmeasure and eigenfunction, respectively. As usual, $dm = h dv$ and $\hat{T}f = \lambda^{-1} h^{-1} L_{\phi}(hf)$ is its transfer operator.

PROPOSITION 5: *Under the above assumptions,* $\nu(h) < \infty$ *iff* ϕ *is positive recurrent, and* $\nu(h) = \infty$ *iff* ϕ *is null recurrent.*

Proof: Fix $a \in S$ and let $\tau_1(x)$ be given by (9). By conservativity, τ_1 is well defined and finite v-almost everywhere in [a]. Set $\psi_N = 1_{[\tau_1=N]}$. By (16), $\forall N \ \forall k > N$

$$
(\hat{T}^k \psi_N)1_{[a]} = B_1^{\pm 2} \lambda^{-N} Z_N^*(\phi, a) (\hat{T}^{k-N} 1_{[a]}) 1_{[a]}.
$$

Taking limits in both sides, using pointwise dual ergodicity, we see that

$$
\lambda^{-N} Z_N^*(\phi, a) = B_1^{\pm 2} m[\tau_1 = N] / m[a].
$$

It follows that

$$
\sum_{n=1}^{\infty} n \lambda^{-n} Z_n^{\ast}(\phi, a) = B_1^{\pm 2} \frac{1}{m[a]} \int_{[a]} \tau_1 dm.
$$

The result follows from the ergodicity and conservativity of m and the Kac formula $\int_{[a]} \tau_1 dm = m(X)$.

PROPOSITION 6: Under the above assumptions, for every cylinder [a],

1. if ϕ *is null recurrent then*

$$
\lambda^{-n}L_{\phi}^{n}1_{\{\underline{a}\}}\underset{n\to\infty}{\longrightarrow}0
$$

uniformly on cylinders whence $a_n = o(n)$;

2. if ϕ *is positive recurrent then*

$$
\lambda^{-n}(L_{\phi}^{n}1_{\left[\underline{a}\right]})(x) \underset{n \to \infty}{\longrightarrow} \frac{h(x)}{\nu(h)}\nu[\underline{a}]
$$

uniformly on compacts whence $a_n \sim n \cdot const.$

Proof: Assume that ϕ is null recurrent and fix some $a \in S$. Since L_{ϕ} is positive and h is uniformly bounded away from zero and infinity on $[a]$, it is enough to show that $\lambda^{-n} h^{-1} L_{\phi}^{n}(h1_{[a]}) \longrightarrow 0$ uniformly on cylinders. Choose unions of partition sets F_n such that $F_n \nearrow X$ and $0 < m(F_n) < \infty$. ϕ is null recurrent so $m(F_N) \nearrow \infty$. Set $f_N = 1_{[a]} - 1_{F_N} \cdot m[a]/m(F_N)$. For every $b \in S$ the usual estimations yield (for $\|\cdot\|_1 = \|\cdot\|_{L^1(m)}$)

$$
\begin{aligned}\|1_{[b]} \hat{T}^n 1_{[a]}\|_\infty & \leq & B^3_1 \frac{1}{m[b]} \|1_{[b]} \hat{T}^n 1_{[a]} \|_1 \\ & \leq & \frac{B^3_1}{m[b]} \Big(\|1_{[b]} \hat{T}^n f_N\|_1 + \frac{m[a]}{m(F_N)} \|1_{[b]} \hat{T}^n 1_{F_N}\|_1 \Big) \\ & \leq & \frac{B^3_1}{m[b]} \Big(\| \hat{T}^n f_N\|_1 + \frac{m[a]m[b]}{m(F_N)} \Big). \end{aligned}
$$

Here, \hat{T} is the transfer operator of m. Since $m(f_N) = 0$ and m is exact (it is equivalent to ν , and ν has the Schweiger property), it follows from a theorem of M. Lin (see theorem 1.3.3 in [2]) that $\|\hat{T}^n f_N\|_{L^1(m)} \to 0$. It follows from this and from the fact that $m(F_N) \uparrow \infty$ that $||1_{[b]}T^n1_{[a]}||_{\infty} \longrightarrow 0$ as required.

Assume now that ϕ is positive recurrent. Without loss of generality, assume that $\nu(h) = 1$. For every cylinder [a] the family $\{\lambda^{-n} L_{\phi}^{n}1_{[a]}\}\)n$ is equicontinuous and uniformly bounded on partition sets [b] (by $C||h1_{[b]}||_{\infty}$ where $C =$ $1/\inf\{h(x): x \in [a]\}\)$. It follows that every subsequence has a subsequence of its own which converges uniformly on compacts. It is enough to show that the only possible limit point is $h\nu[\underline{a}]$, because it will then immediately follow from the equicontinuity of $\{\lambda^{-n}L_{\phi}^{n}1_{\left[\underline{a}]\right\}n}$ that this sequence tends uniformly on compacts to $h\nu[\underline{a}]$.

Assume that $\lambda^{-n_k} L_{\phi}^{n_k} 1_{[a]}$ tends to φ pointwise. Since for every k, $\lambda^{-n_k} L_{\phi}^{n_k} 1_{[a]}$ \leq *Ch* and *Ch* is integrable, we have by the dominated convergence theorem that

$$
\int |\varphi - h\nu[\underline{a}]| \, d\nu = \lim_{k \to \infty} \int |\lambda^{-n_k} L_{\phi}^{n_k} 1_{[\underline{a}]} - h\nu[\underline{a}]] \, d\nu
$$

$$
= \lim_{k \to \infty} \int |\hat{T}^{n_k}(h^{-1} 1_{[\underline{a}]} - \nu[\underline{a}])| \, dm.
$$

Since m is exact, the last limit is equal to zero and we have that $\varphi = h\nu[\underline{a}]$ almost everywhere. Since φ must be continuous, it must be equal to $h\nu[a]$ everywhere. (Note that this argument does not work if ϕ is null recurrent, because in this case $h^{-1}1_{[a]} - \nu[\underline{a}]$ is not integrable.) \Box

References

- [1] J. Aaronson, *Rational ergodicity and a metric invariant for Markov shifts,* Israel Journal of Mathematics 27 (1977), 93-123.
- [2] J. Aaronson, *An Introduction to Infinite Ergodic Theory,* Mathematical Surveys and Monographs 50, American Mathematical Society, Providence R.I., 1997.
- [3] J. Aaronson, M. Denker and M. Urbanski, *Ergodic theory for Markov fibered systems and parabolic rational maps,* Transactions of the American Mathematical Society 337 (1993), 495-548.
- [4] L. M. Abramov, *Entropy of induced automorphisms,* Doklady Akademii Nauk SSSR 128 (1959), 647-650.
- [5] R. Bowen, *Equilibrium states and* the *ergodic theory of Anosov ditfeomorphisms,* Lecture Notes in Mathematics 470 Springer-Verlag, Berlin, 1975.
- [6] W. Feller, *An Introduction to Probability Theory and its Applications,* Vol. 1, 3rd edn., Wiley, New York, 1968.
- [7] B. M. Gurevic, *Topological entropy* for *denumerable Markov chains,* Doklady Akademii Nauk SSSR 187 (1969); English transl, in Soviet Mathematics Doklady 10 (1969), 911-915.
- [8] B. M. Gurevic, *Shift entropy and Markov measures in the path space of a denumerable graph,* Doklady Akademii Nauk SSSR 192 (1970); English transl. in Soviet Mathematics Doklady 11 (1970), 744-747.
- [9] S. Isola, *Dynamical zeta functions for non-uniformly hyperbolic transformations,* preprint, 1997.
- [10] B. P. Kitchens, *Symbolic Dynamics: One Sided, Two Sided and Countable State Markov Shifts,* Universitext, Springer-Verlag, Berlin, 1998.
- [11] U. Krengel, *Entropy of conservative transformations,* Zeitschrift f'fir Wahrscheinlichkeitstheorie und Verwandte Gebiete 7 (1967), 161-181.
- [12] A. Lasota and Y. A. Yorke, *On the existence of invariant measures for piecewise monotonic transformations,* Transactions of the American Mathematical Society 186 (1973), 481-488.
- [13] F. Ledrappier, *Principe variationnel et* systemes *dynamique symbolique,* Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 30 (1974), 185-202.
- [14] V. A. Rohlin, *Exact endomorphisms* ofa *Lebesgue* space, Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya 25 (1961), 499-530 (Russian); English Translation in American Mathematical Society Translations, Series 2, 39 (1964), 1-37.
- [15] D. Ruelle, *Thermodynamic Formalism,* in *Encyclopedia of Mathematics and its Applications,* Vol. 5, Addison-Wesley, Reading, MA, 1978.
- [16] I. A. Salama, *Topological entropy and recurrence of countable chains,* Pacific Journal of Mathematics 134 (1988), 325-341.
- [17] O. M. Sarig, *Thermodynamic formalism for some countable topological Markov shifts,* M.Sc. Thesis, Tel Aviv University, 1996.
- [18] O. M. Sarig, *Thermodynamic formalism for countable Markov shifts*, *Ergodic* Theory and Dynamical Systems 19 (1999), 1565-1593.
- [19] S. V. Savchenko, *Absence of equilibrium measure for nonrecurrent Holder functions,* preprint (to appear in Matematicheskie Zametki).
- [20] E. Seneta, *Non-negative Matrices and Markov Chains,* Springer-Verlag, Berlin, 1973.
- [21] M. Thaler, *Transformations on* [0, 1] *with infinite invariant measures*, Israel Journal of Mathematics 46 (1983), 67-96.
- [22] M. Thaler, *A limit theorem for the Perron-Frobenius operator of transformations on* [0, 1] *with indifferent fixed points,* Israel Journal of Mathematics 91 (1998), 111-129.
- [23] M. Urbanski and P. Hanus, *A new class of positive recurrent functions,* in *Geometry and Topology in Dynamics* (Winston-Salem, NC, 1998/San Antonio, TX, 1999), Contemporary Mathematics 246, American Mathematical Society, 1999, pp. 123- 135.
- [24] D. Vere-Jones, *Geometric ergodicity in denumerable Markov chains,* The Quarterly Journal of Mathematics. Oxford (2) 13 (1962), 7-28.
- [25] D. Vere-Jones, *Ergodic properties of nonnegative matrices I*, Pacific Journal of Mathematics 22 (1967), 361-385.
- [26] P. Walters, *Ruelle's operator theorem and g-measures,* Transactions of the American Mathematical Society 214 (1975), 375-387.
- [27] P. Waiters, *Invariant* measures *and equilibrium states for some mappings which expand distances,* Transactions of the American Mathematical Society 236 (1978), 121-153.
- [28] M. Yuri, *Multi-dimensional maps with infinite invariant measures and countable* state *sofic shifts,* Indagationes Mathematicae 6 (1995), 355-383.
- [29] M. Yuri, *Thermodynamic formalism for certain nonhyperbotlc maps,* Ergodic Theory and Dynamical Systems 19 (1999), 1365-1378.
- [30] M. Yuri, On the *convergence to equilibrium* states *for certain non-hyperbolic systems,* Ergodic Theory and Dynamical Systems 17 (1997), 977-1000.
- [31] M. Yuri, *Weak Gibbs* measures *for certain nonhyperbolic systems,* preprint.