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ABSTRACT 

We extend RueUe's Perron-Frobenius theorem to the case of.HSlder con- 
tinuous functions on a topologically mixing topological Markov shift with 
a countable number of states. Let P(r denote the Gurevic pressure of 
r and let Lr be the corresponding Ruelle operator. We present a neces- 
sary and sufficient condition for the existence of a conservative measure 
u and a continuous function h such that L*~u = eP(r Lch --- eP(r 
and characterize the case when f hdu < ~ .  In the case when dm --- hdu 
is infinite, we discuss the asymptotic behaviour of L~, and show how to 
interpret dm as an equilibrium measure. We show how the above proper- 
ties reflect in the behaviour of a suitable dynamical zeta function. These 
results extend the results of [18] where the case f hdu < co was studied. 

1. I n t r o d u c t i o n  and s t a t e m e n t  o f  ma in  results  

Let S be a countable  set of s t a t e s  and A = ( t i j ) s •  a mat r ix  of zeroes 

and  ones. We identify S with N and induce an  order on S. Let X --- 

i x  �9 sSu{~  Vi tx~,+~ = 1} and  T: X -~ X be the left shift ( T x ) i  = x i+l .  

Fix r �9 (0, 1) and  set t ( x ,  y) = inf{i: xi r yi}. We endow X with the topology 

induced by the metr ic  dr(x ,  y) = r t(~'y). The c y l i n d e r  sets  

[a] = [ a 0 , . . .  , a n - l ]  : {x  �9 X:  Vi x ,  = 

form a base for this topology and generate the corresponding Borel a -a lgebra  B. 

Let a be the par t i t ion  {[a]: a �9 S}. The elements of a are called p a r t i t i o n  sets,  
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and the members of a~ -1 are called cylinders of l en g th  n. We denote the length 

of a cylinder [_a] by lal. 

X is called topo log ica l ly  mix ing  if (X, T) is topologically mixing. This 

means that Ya, b E S 3Nab Vn > N~b [a] n T-"[b] ~ r Throughout this paper, a 

function r X ~ R is called local ly  H S l d e r  c o n t i n u o u s  (with parameter r),  if 

it is uniformly Lipschitz continuous with respect to dr on all cylinders of length 

2. This is equivalent to the requirement that 3A > 0, r E (0, 1) such that Vn >_ 2 

Vn[r < Ar n where V,[r = sup{[r - r Xo = yo, . . .  ,Xn-1 = Yn--1}" This 

notion of Hhlder continuity extends the one considered in [18], where V,[r < Arn 

was also assuined for n = 1. Indeed, every function of the form r = r  

is locally Hhlder continuous, even when V1(r = oo (in which case it does not 

satisfy the condition used in [18]). A close reading of [18] shows that the seemingly 

greater generality does not affect the arguments in sections 1-4 there. 

The R ue l l e  O p e r a t o r  [15] is given by (Lc f ) ( x )  = ~Ty=zer  If 

IfLr < oo this is a bounded linear operator on the Banach space of bounded 

continuous functions on X. Note that for a countable Markov shift the sum which 

defines Lr may be infinite, in which case r must be unbounded in order for it to 

converge. This is not a problem since local Hhlder continuity on a non-compact 

space does not imply boundness. 

In this paper the term 'measure' refers to any a-finite Borel measure # which 

is not trivial in the sense that there is some A E B for which #(A) > 0. We use 

the notation # ( f )  for the integral of the function f with respect to #, when it 

exists. The measure # o T is the measure given on cylinders by 

(1) (# o T)(A) = E #(T(A M [hi)). 
a6S 

Integrals with respect to # o T are given by 

a6S [a] 

If # is non-singular (i.e. # ~ # o T - t )  then # << # o T and the function g~ = 

d # / d # o T  is well defined # o T  almost everywhere. It is characterized rood I loT by 

the property that Llogg, acts as the transfer operator of #, i.e. #(~01Llogg~2) = 

#(~l  o T �9 ~2) for every ~1 E L~176 ~o2 ELI (# ) .  We will also make use of the 

measures # o Tn defined by induction by ~u o T n = (# o T n-  1) o T. 

For every a E S, n E N set Zn(r  = ~T,,z=zer where Ca -- 
E , - 1 r  T k. k=0 o It Was shown in [18] that if X is topologically mixing and r is 
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locally H51der continuous then the limit 

Pc(C) = lim 1 log Z,,(r a) 
n--~ oo n 

exists, is independent of a and belongs to (-oo,  cc]. If ]lLr < oo, this limit 

is finite and satisfies 

(2) f 
where PT(X) denotes the set of all invariant Borel probability measures. Pc(C) 

is called the Gurev ic  P r e s s u r e  of r and is a generalization of the Gurevic 

topological entropy (aurevic [7]). (The above results were stated in [18] only 

for locally H51der continuous functions for which V1 (r < oo but the proofs only 

require that  En>2 Vn(C) be finite.) 

In [18] a necessary and sufficient condition was given for Ruelle's Perron-- 

Frobenius theorem to hold: there exist a positive number A, a positive continuous 

function h and a a-finite Borel measure v such that Lr = Ah, L'~u = Av, 

f hdu = 1 and such that  for every cylinder [a_], X-nL$1[al ,~---~o~ hv[a] uniformly 

on compacts. If this is the case, Pc(C) = logA and dm = hdv is an invariant 

probability measure which can be interpreted as the 'equilibrium' measure of r 

in a certain sense (see [18] for details). 

In this paper we study the case when Ruelle's Perron-Frobenius theorem fails. 

The main theme of this work is that the phenomenology of this situation is 

analogous to that one encounters in the case of a null recurrent or a transient 

probabilistic Markov chain (see [6], [10], [20]). In this situation A - " L ~ I ~  ,~-~-+oo 0, 
but there may exist constants an /~ 0o for which for every cylinder 

a~ 1 ~,'k=l ~ - " L ~ I ~  , ~  hu[a_] pointwise where Lc, h = Ah, L;v  = Av, f h dv = 
oo. In this case, the measure dm = hdv is an infinite invariant measure which 

can be described as the appropriate 'equilibrium measure' of r Given ~,, the con- 

struction of h is done using the techniques of [3] (see also [2], [12], [21], [22], [28], 

[29], [30], [31]). The main point of this paper is the construction of a conformal 

measure v with respect to which these methods can be applied. 

We proceed to make our statements more precise. Set 

z . ( c , a )  = 
Tnx=z Tnz=x 

z 0 = a  z 0 = a ; z  I , " "  , z , ~  _ 1 ~ t a  

We introduce the following definition, in analogy with the theory of Markov 

chains: 
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Definition 1: Let X be topologically mixing and r be locally H61der continuous 

with finite Gurevic pressure log A. r is called: 

1. r e c u r r e n t  if for some (hence all) a E S, )--~t,<oo A-"Z,,(r  = oo; and 

t r a n s i e n t  otherwise; 

2. pos i t ive  r e c u r r e n t  if it is recurrent and for some (hence all) a E S, 

 .<oo nA-nZ;,(r a) < co; 
3. nul l  r e c u r r e n t  if it is recurrent and for some (hence all) a E S, 

E.<oo  a) = 

The notion of positive recurrence was given a different, though equivalent, 

definition in [18]. The equivalence follows from Theorem 1 below. It can be 

easily verified that if r = r xl) then recurrence, positive recurrence and null 

recurrence are equivalent to the matrix (er215 being R-recurrent, R-positive 

and R-null in the terminology of Vere-Jones [24], [24]. The main results of this 

paper are contained in the following theorem: 

THEOREM 1: Let X be topologically mixing and r locally H61der continuous 

with finite Gurevic pressure. r is recurrent iff there exist A > O, a conservative 

measure u, finite and positive on cylinders, and a positive continuous function h 

such that L*ou = Au and Loh = Ah. In this case A = expPc(r and San /2 oc 

such that for every cylinder [fi] and x E X 

1 n 

(3) ~ ~ A-k(L~l~)(x)  n---~ h(x)u[a], 

where {an}n satisfies an "~ ( f [ a ] h d v ) - l ~ = l A - k Z k ( r  for every a 6 S. 

Purthermore, 

1. i f  r is positive recurrent then u(h) < oo, an "" n-  const, and for every [_a], 

A-nL;I  .---s uniformly on compacts, 

2. i f  r is null recurrent then u(h) = oo, an = o(n), and for every [a], 

A-nL~IM ~ 0 uniformly on cylinders. 
n - ~  o o  

Remark  1: In the case when r depends on a finite number of coordinates, this 

theorem can be derived from the work of Vere-Jones on countable matrices ([24], 

[25]). The case when r depends on an infinite number of coordinates, however, 

requires techniques which are essentially different. The main new ingredient in 

the proof is a tightness argument (see Proposition 2). 

Remark  2: It follows from the proof that log h and log h o T are both locally 

HSlder continuous (in particular h is uniformly bounded away from zero and in- 
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finity on partition sets). It follows from (3) that u and h are uniquely determined 

up to a multiplicative factor. 

Remark 3: The measure dm = h du is invariant and conservative, and its trans- 

fer operator is given by Tf  = A-lh-ILr It follows from local Hhlder con- 

tinuity and results in [3] that dm is exact, pointwise dual ergodic and that for 

din, every cylinder [a_] is a Darling-Kac set with an exponential continued frac- 

tion mixing return time process. See [2], [3] for definitions and a survey of limit 

theorems for such mea.sures m. 

We now show how to formulate the results of Theorem 1 in terms of suitable 

d y n a m i c a l  z e t a  func t ions .  

Assume that X is topologically mixing and that r is locally Hhlder continuous 

such that IILr < cx~. Ia this case, by the results of [18], Pc(C) is finite and 

(2) holds. Recall that Ruelle's dynamical zeta function [15] is given by 

~(t) = exp( ~ t'---n Z,(r 

where Zn(r = ~ a e s  Zn(r a) = ~,T,~=~ er The radius of convergence of C 

is equal to e -p(*) where P(r  = ~T-mn~o~(1/n)log Z,,(r 

If S is finite, P(r  = Pc(C) whence C is holomorphic in [M < e-P],  where 

P = sup{h,+l~(r  (in this case X is compact, so r is bounded and the condition 

# ( - r  < cx~ in (2) is empty). It is also known that in this case C has a simple 

pole in e -p [15]. 

If S is infinite P(r  may be strictly larger than P (for examples in the case 
r = 0 see [7] and [16]). Therefore, the disc of convergence of C may be strictly 
smaller than {z: Izl < e-g}. We are naturally led to the consideration of the 

following local  d y n a m i c a l  z e t a  func t ions  defined for each a E S, 

C~(t) = exp (~ -~  tn a)). 
Note that at least formally, C = [I~es C~. The radius of convergence of C~ is 

independent of a, and is equal to e -PG(v) where PG(~b) satisfies (2). Obviously, 

Ca has a singularity in e -pc'(r 
As the following corollary shows, the behavior of Ca near this singularity 

determines the recurrence properties of r (this is similar to the role of 

generating functions in renewal theory [6]). The following corollary is obtained 

from Theorem 1. 
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COROLLARY 1: Let X be topologically mixing and r locally H61der continuous 

such that [[Lr < oo. Fix a E S and let R = e -Pa(r be the radius of  

convergence of  (a. 

1. r is recurrent iff ( log(a)'(R) = oc. In this case, i f  dm = hdu is the 

corresponding invariant measure and {an}n is a return sequence of  m, then 

t E anR-n tn  (log (a) ' ( t ) , , ,  1 - 
' n = l  

ast / ' n .  

2. r is positive recurrent iff there exists Ca > 0 such that (log(a)'  ,,~ 

Ca(1 - t / R )  -1 as t J R. In this case Ca = ePa(r where m is the 

equilibrium probability measure of r 

3. r is null recurrent iif (log (a)' = o(1/(1 - t / R ) )  as t ,~ R and r is recurrent. 

It follows from the corollary that in the positive recurrent case 

1 ~m[a](l+o(1)) e_PG(r ) 
(a(t) = (1 - ePa(~)t, I as t 

where m is the equilibrium probability measure of r If S is finite, we retrieve the 

well known property of ( = I-Iaes (a that 

(o(t) (1 e o *lt) = -- as t /~ e -PG(4~) 

(in fact e -Pa(r is a simple pole [15]). In broad terms, the degree of singularity 

for the full zeta function is distributed among the various local zeta functions 

according to the equilibrium measure. 

In section 2 we apply Theorem 1 to the theory of equilibrium states by 

describing the measure dm = h du as an equilibrium measure in a certain weak 

sense, when it is infinite. Section 3 contains a proof of Theorem 1. 

N o t a t i o n a l  C o n v e n t i o n :  We use the following short-hand notation for 

double inequalities: Va, b > O, B > 1, a = B+lb r B - l b  <_ a <_ Bb. We 

write a = A+t B+lb for a = (AB)+lb,  and a = A+kb for a = (Ak)+lb. 

ACKNOWLEDGEMENT: This paper constitutes part of a Ph.D. thesis which was 

prepared in Tel Aviv University under the instruction of Jon Aaronson, to whom 

I would like to express my gratitude for his support and encouragment, and for 

many conversations and useful suggestions. 
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2. A p p l i c a t i o n  to  t he  t h e o r y  of  equ i l ib r ium s t a t e s  

Let X be topologically mixing and r be a locally Hhlder continuous function 

with finite Gurevic pressure. Assume r is recurrent. Let A, v and h denote the 

eigenvalue, eigenmeasure and eigenfunction given by Theorem 1. It is easy to 

verify that  the measure dm = h dv is an invariant conservative measure. This is 

a Gibbs measure for r in the following sense: Va, b E S 3Mab > 1 such that  for 

m-almost all x 6 X 

h(x)e r _ M+I eCb,(x)-nPG($) 
(4) m ( x o " ' " X " - l l X " ' x " + l " " ) -  A"h(T"x)  ~o,~, 

This is weaker than the Gibbs property used by Bowen in [5], because the bound 

Mzo,~, may depend on x. To prove (4), check that  the transfer operator of m 

is given by T f  = A - l h - l L $ ( h ] )  and that Em( f lT -nB)  = (:~n]) o T" .  The rest 

follows by direct computation from the fact that h is bounded away from zero 

and infinity on partition sets. Note that if r is null recurrent, m is infinite. 

We want to describe the measure m as a solution of a suitable variational 

problem. This was done for the positive recurrent case in [18] so we focus on null 

recurrent potentials. For such potentials m is infinite and the notion of entropy 

requires explanation. 

We recall the definition given in [11], following the approach of [1]. Let 

(X, B, #, T) be an ergodic probability preserving transformation. For every mea- 

surable set with positive measure A one can define the i n d u c e d  t r a n s f o r m a -  

t ion  TA: A--+ A by TAX = T~A(~)x where %OA(X) = inf{n >_ 1: Tnx  6 A} (the 

Poincar6 Recurrence theorem guarantees that ~OA < oo almost everywhere on A). 

It is known that  the probability measure [I A (E)  = # ( E N  A ) /# (A )  is TA-invariant 

and ergodic, and that  its entropy is given by the A b r a m o v  F o r m u l a  [4]: 

h,,(T) = #(A)ht, A (TA). 

If # is infinite, ergodic and conservative, the same method of inducing applies 

(in this case Poincar~'s theorem is replaced by the conservativity assumption). 

Applying the Abramov formula to TA, Ts  as induced versions of TAuB one sees 

that  

0 < II(A), #(B)  < oo ~ #(A)h~A (TA) = # ( S ) h , B  (TB). 

Thus, the number #(A)h,A (TA) is independent of the choice of A 6 B (as long 

as 0 < #(A) < oo) and may therefore be used as the definition of the entropy of 

the infinite conservative ergodic measure #. 
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Example i (Krengel [11]): Let (p,j) be a null recurrent irreducible stochastic 

matrix and (Pi) its stationary vector. Let # be the corresponding invariant infinite 

Markovian measure. Then hi, = -~-~.~,tPsP~t logpst. 

For examples arising from interval maps, see [21]. 

THEOREM 2: Let X be topologically mixing and r a recurrent locally H61der 

continuous function with finite Gurevic pressure. 

1. For every conservative ergodic invariant measure # which is finite on 

partition sets, if  # (Pc(r  - r < oo then h~,(T) <_ #(Pc(C) - r 

2. Let h and v be as in Theorem 1 and set d m =  hdu. I f  re(Pc(C) - r < oo 

then hm(T) = m ( P c ( r  - r 

Proof: Without  loss of generality assume that  Pc(C) = 0 (we can always pass 

to the potential r - Pc(C)).  Fix some invariant measure/z  which satisfies the 

assumptions of the theorem and choose some partition set A of (finite) positive 

measure. 

Let #A be the probability measure #A(E)  = #(A N E) /# (A) .  Let TA: A --+ A 

be the induced map TAX = T~A(~)x where (pA(X) : ] A inf{n > 0: Tr'x E A}. 

Then/z  A is T A invariant. Let 

S: = {[a] C_ A: A appears only once in a_ and [a, A] ~ 0}. 

This is a generating Markov partition for TA ( /ZA(US) ---- 1 by conservativity). Set 

X = (~)Nu{0} and let 7r: X --+ A C X be the natural injection 7r([a_]t[a_]2 . . . )  = 

(a_t;_a2;...). For every # as in the above set ~ =/~A o 71-. It is easy to check that  

the map 7r: X --+ X is a measure theoretic isomorphism between the systems 

(A, B A  A ,#A,TA)  and (X,  I3(X),-fi, T) where T: X ~ X is the left shift. Let 

r X --+ R be the induced version of the potential r given by 

/ ~pA--1 

This is a locally HSlder continuous function (in fact, it even satisfies V1(r < ~ ,  

since if x0 =[a_] E S then rr(x) E [_a, A]). The proof of local HSlder continuity is 

standard, and is therefore omitted. 

Let L~ denote the Ruelle operator of r L-~f = ~ y = =  e-&Y)f(9). Set ~ =- u o r 

and h = h o rr. We claim that  L ~  = ~, L-~h = h. To see this note that  

dm 
log dm o T = r + log h - log h o T 
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(because f ~ h-~L~(hf)  acts as the transfer operator of m). Let mA denote the 

normalized restriction of m to A and ~ = rnA o ~r. Thcn since TA = T~A, 

whence 

(5) 

dmA _ r  

log dmA o TA ~ r o T i + log h - log h o TA 
i=O 

d-~ 
log d ~  o ~  - ~ + log h - log h o T. 

Since m is T invariant, mA is TA invariant. It follows that ~ is T invariant, 

whence Llog~l = 1 where ~ = logd~/d-~  o T. It follows from (5) that 

~--~e (~+l~176176 = 1 

Ty=x 

whence L~h = h. We show that L~P = 7. Without loss of generality, d~ = 

h - ld -~  (the only difference is a normalizing constant). Using (5) and the fact 

that Llo~y acts as the transfer operator of ~ ,  we have that for every f ~ L~(P), 

/ L-J = / K-l L-J = / Llogy(K-  f) dm = / f 

as required. 

It follows from Theorem 1 and the relations L~h = h, LCY = ~ and P(h) = 

V(1Ah) < ca that r is positive recurrent and that Pc(C) = 0. Since h = h o 

and ~r(X) C_ A, h is uniformly bounded away from zero and infinity. It follows 

that [IL~ll[o~ < ca. By (2), 

{h , (T)  + f Cdl~: # is T invariant, #(X) = 1, /~(-r < ca} = Pa(r = 0. sup  

Since for every conservative invariant (possibly infinite) ergodic measure # such 

that #(A) < ca and /z ( - r  < ca the measure ~ = I.tA o 11" is a T invariant ergodic 

probability measure such that 

~A--I 

It(A)~(-r  = - / A  ~ r o T k d# 
k=0 

= I , ( - r  < co ,  

we have that  h~,(T) +/~(r = #(A)[h~-(T) + ~(r _< 0. 

We now assume that # = m and that m ( - r  < ca, and show that ha(T)  + 

m(r = 0. X clearly satisfies the big images property: 3b l , . . . ,  bN E -S such that 
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for every a E S there is some bi such that [a, bi] is not empty (in fact for every 

a, b E S [a, b] is non-empty). Since h is uniformly bounded away from zero and 

infinity, ~ is a Gibbs measure for r in the sense of Bowen [5]: there is some global 

constant M > 1 such that for every a_0,... ,_a,_ 1 E S and x E [a_0,... ,an_l] C_ X, 

rt,--1 

(6) m[ao . . . .  ' a n - l ]  ---- M+Xexp Z r 
k = 0  

(see [18], Theorem 8). Let ~ = {[aq]: a__ e S} denote the natural partition of X. 

By the continuity properties of r and by (6) 

Hm(~) = - Z ~[a] log~[a_] 
[.9.] E-d 

< - + l og  M 

= - fxCd--~ + logM 

~A--I 

1 /A Tk - re(A) Z r176 dm +logM 
k = 0  

_ i f  m(A)  r dm + log M, 

whence Hm(~) < co. Since ~ is a generator with finite entropy, we have by the 

Rohlin formula [14] that  

d ~  o _~ d--~ = - -r d-~ - C drn. m(A)  

Multiplying both sides by m(A)  we have that hm(T) = -m( r  as required. I 

Remark 4: It follows from the proof that m is the unique up to a constant 

conservative ergodic invariant measure such that H~(~) < cc and hm(T) = 

re(Pc(C) - r since by a trivial generalization of an argument of Bowen, if 

there exists a probability measure which is Gibbs in the sense of Bowen, with a 

generator which has finite entropy, then this measure is the unique solution of 

the variational problem (see [5]). 

The problem with the last theorem is that frequently both hm(T) and 

re(Pc(C) - r are infinite. In this situation, the sum hm(T) + m(r - Pa(r 

is meaningless. The following theorem completes our discussion by treating this 

case as well. 
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Set 

Iu -- - y:~ l[a] log tz([a]lT-' /3).  
aES 

This is well defined for every # which is finite on par t i t ion sets. The  following 

theorem generalizes theorem 7 in [18] (see also [13], [27], [28]). 

THEOREM 3: Let X be topologically mixing and r locally H61der continuous 

with finite Gurevic pressure. Assume that  r is recurrent, Iet h and u be as in 

Theorem 1 and set 

Cr = r  l o g h -  logh oT .  

Then for every conservative invariant measure p which is finite on partition sets, 

It` + r _ p a ( r  is one-sided integrable with respect to # and 

(7) - o o  f ( , .  + r _ d# < 0; 

i f #  ~ # o T, the integral in (7) is equal to zero iff l~ is proportional to h du. 

Proof: Fix a conservative invariant measure # finite on part i t ion sets and set 

gt` = d#/d# o T, 

where # o T is given by (1). Recall tha t  the transfer operator  of # is given by 

Llogg, and tha t  

Et`(f[T-1B) = (Llogg, f )  o T. 

It follows tha t  

I u = - log gt`. 

Set g = A-leCh/h o T where )~ = expPc ( r  One checks that  ~TU=xg(Y) = 1 

and tha t  ~-']~Tu=x 9u(Y) = 1 for /~ almost all x e X (the first equality follows from 

the equat ion L~h = )~h; the second follows from the identity 

Iz(f Z 9t`(Y)) = #(Llogg~(f o T)) -- # ( f ) ,  
Ty=~ 

which is satisfied for every f �9 LI(#) ) .  

We show tha t  I u + CP - PG(r  is one-sided integrable. We use the nota t ion 

r  = r162 and show tha t  (I t, + r - P c ( r  + is integrable. Fix a sequence of 

measurable sets An ~ X such that  0 < # ( A , )  < cx~. Fix an arb i t rary  integrable 

function f _> 0. Set 

As,t,n = An n [s < 9/gu < t]. 
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Using the inequality logx  < x - 1 we see tha t  for every s, t, n, 

fA (I.+r162 f (-logg. + l o g g ) + l A , . , . , / o T d #  
s ,L ,n  

/[log(g/g,)] + 1A,.,., / o T d# 

+ 1 

{ g(y) 
Ty=T:t  

= / f o T ~ 1A,.,.,, (y)[g(y) -- g~,(y)]+ d#. 
.I 

T y = T x  

The  last  integrand is bounded by / o  T. Since this is t rue for all s, t, n the 

integral  #[(I~, + r  - PG(r  +] is finite. This  implies tha t  I~, + r  - PG(r  is 

one-sided integrable.  Applying the same calculation to Ij, + r  - PG(r  ra ther  

than  (I~, + r - P c ( r  + yields the inequality 

/. V. 
s,~,n T y = T x  

The  integrand on the left is bounded in absolute value by the integrable 

function f o T. I ts  pointwise limit when s ~ 0, t, n --~ oc is zero, because 

~-~Ty--Tx [g (Y) - g~, (Y)] = 0. We may  therefore apply  t he domina ted  convergence 

theorem and deduce 

f /  + r - Pc ( r  d# <_ 0. T[I~, 0 

Since f was arbi t rary,  (7) follows. 

Assume tha t /~  ~ # o T. We show tha t  the integral in (7) is equal to zero if and 

only if d/~ is propor t iona l  to h dr. If d/~ is proport ional  to h dv the integrand in (7) 

is identically zero because then I v = - logg,  where g = )~-le*h/hoT (this follows 

from the fact tha t  the t ransfer  opera tor  of any measure  propor t ional  to hdv is 

given by f ~ A - lh - lLr  We show the reverse implication. Assume tha t  # 

is such tha t  # , -  # o T and tha t  there is an equality in (7). A close inspection 

of the proof  shows tha t  this is possible only if log(g/g~,) = (g/g~,) - t /~ a lmost  

everywhere.  This  is possible only if g~, = g mod #. Since # ,,, # o T,  this implies 

tha t  g~, = g rood #oT. I t  follows tha t  Ltog g is the transfer opera tor  of #. Consider 
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the function r = log g = r + log h - log h o T - log A. This is a locally HSlder 

continuous function (because by Remark 2 after Theorem 1, log h and log h o T 

are both locally HSlder continuous). It is also clear that Lr  = 1,L~0 # = # 

whence ~b is recurrent. Since it is also true that L~(hdp) = Ll'ogg(hdu) = hdv 

we have by the convergence part of Theorem 1 that # and hdu are proportional. 
| 

3. P r o o f  o f  T h e o r e m  1 

This section is devoted to the proof of Theorem 1. Throughout the proof we 

assume that  X is a topologically mixing countable Markov shift and that r X --+ 

R is locally HSlder continuous with finite Gurevic pressure. Set 

o o  

B k = e x p  Z Yn(r (k = l, 2, . . .). 
n = k + l  

Local HSlder continuity implies that Vn >_ 1, Bn < oo and Bn x~ 1. The following 

inequality will be used constantly: 

(8) x0 = Y0, Xn-1 = Yn-1 =~ Vm < n - 1 (e r : R "t'l eCru(Y)) 
�9 �9 �9 ~ - -  ~ n - m  1 "  

A frequently used corollary is that Vxa E [a], 

Z , ( r  a) = B~I(L~I[a])(x~). 

The reader should note that the assumption that the Gurevic pressure is finite 

implies that all of the Zn(r  are finite (because by local HSlder continuity 

3C > 1 such that  Vm, n, C - m Z n ( r  m < Zmn(r This assumption also 

implies that  the L~ are all defined on bounded functions supported inside a 

finite union of partition sets. 

3.1 EXISTENCE OF u. 

PROPOSITION 1: I f  there exists A > 0 and a conservative a-finite measure v 

which is finite on some cylinder such that L*cu = Au then r is recurrent and 
A = e Pa(r 

Proof: Choose a cylinder [b] with finite positive measure. It is easy to 

verify that  A-1L4 ' acts as the transfer operator of u, whence by conservativity 

~n>__l A-nL;1N = 0o u-a.e, on [b] (see [2]). Thus, for v-almost all x E [b] 

o o  o O  

Z A-'*Z,(r  bo) >_ B~ - 1 Z  A - " ( L ; I ~ I ( x )  = 0o. 
n - - I  n = l  
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We show that A = e P~ It follows from what we have just proved that 

A <_ e Pc(ep) because the radius of convergence of the series ~ k > l  Zk(r xk is 

e -Pc(C). Consider Zn(r = ~ T , x = x  er �9 By local H61der continuity, 

A-nZn(r  < Bl[v-~]_] f ( A - n L ~ l ~ ) d u  ] < B1. 

By topological mixing and local HSlder continuity n - l logZn( r  -+ Pc(C), 

whence A _> e Ra(cO. I 

PROPOSITION 2: Ire  iS recurrent there exist A > 0 and a conservative measure 
v, finite and positive on cylinders, such that L'~, = Au. 

Proo~ Fix a �9 S, set A = e p~162 and let an = ~-:~r~=lA-kZk(r For every 

y �9 X let ~u denote the probability measure concentrated on {y}. Fix a periodic 

point xa e [a] and set for every b �9 S 

b 1 n 
= - -  k~..1A-k Z ee~'(U)lIb] (y)~y" 

Un an : T k y m z  a 

1 ~-~;=1 A-k(L~l[b])(xa) �9 It follows from local HSlder Clearly u b (X) = u~ ([b]) = -~ 

continuity, topological mixing and the definition of the Gurevic pressure that  for 

every b �9 S 

0 < lim u~(X) < 5-~ vb(x )  < oo. 
n- -~OO n - -bOO 

(It is enough to show that  aft 1 ~-~=1A-kzn(r b) is bounded away from zero 

and infinity for every b. To see this note that 3C, c such that Zn(r < 

CZn+c(r a) and that Vk A-kZk(r a) < 2B1. The last inequality follows from 

,~-kmZk,~(r > Bi-m(~-~Zk(r a))m.) 
We show how to choose a subsequence {ink}k>1 such that for every b �9 S, 

{ubmh} is W* convergent, and show that  the non-trivial measure v given by 
I//* ub~--+Ul[b] satisfies L*cu = Au. Since X is not compact, to do this we have 

to prove that  {Ubmk }k>l are all t ight ,  i.e., 

Vb Ve > 0 3F = Fb,~ compact such that Vn u~(F c) < e. 

It follows from the topological mixing of X that  if {ub}n>l is tight for some b, 

then it is tight for every b. Therefore, we may restrict ourselves to the case b = a 

and set v~ = u,,. 



Vol. 121, 2001 NULL R E C U R R E N T  POTENTIALS 299 

STEP 1: We show that )--]k>xA-kz~(r  < co. 

1 + ~~k>l Z k ( r  xk and R(x )  = ~ k > l  Z ; ( r  xk" 

ify that Vx �9 (0, A-x), T ( x )  - 1 = B ~ 2 R ( x ) T ( x ) .  

R (x )  ~_ B 2 whence R(A -x) < oo. 

To see this, set T ( x )  = 

It is not difficult to ver- 
Therefore Vx �9 (0, A-l),  

STEP 2: Set 

~ ' i n f { n _ > l : T n x � 9  x � 9  
(9) T,(X) = [ 0, X r [a] 

where inf 0 = oc. Define by induction rn (x) = rx (T *' (x)+"'+7"-' (.)x) if r ._  1 (X) < 
OC and r~(x)  = cx) else. Note that rn > 0 only if xo = a. For every sequence of 

natural numbers {hi}i_>1 set 

n({n,}) = {x �9 [a]: vi ~(x) < n,}. 

We show that Ve > 0 3{ni} such that Vn un(R{n i}  c) < e. To see this set 

Z* = ~-~{ . = a; Tk~+'"+k"x _ k, ..... k.~ e Ck,++k~'(x)" z0 = x ;V j  < m r j ( z )  = kj}.  

For {hi}i>1 s.t. ni is larger than the period of xa, 

un (R{n i }  c) <_ 
O0 

Z ~'-[~ > n,] 
i=1 

= 1 E  A-k Z e~(U)l[~'>n'] (y) 
i=1 a n  k=l  Tkll=Za 

~ o = a  

-<~a--~l ~ )~-k E E e*'(U)l[v' <N- ",(u)=k,] (y) 
i----1 k=nt  +1 Tky=za  hl'4"'"+kN=k 

~ O = a  ki>ni,lV(_ k 

n 

< B~ L ~ ~-~ F_, z ; ,  ..... ~ ,_ , z ; , z ; ,+,  ..... ~ 
- -  1 a n  k = n , + l  k l T ' " + k N ~ k  

k,>ni ,N(_k 

O0 O0 n 

a n  i = l  ki=niq-1 k.=ki k l + ' " + k N = k  
N_(k 

,~ ZL ~ 1-(k-k')Zk-k, (C, a) 
k = k i  i=1 k i = n i + l  

O0 O0 

--BI Z Z A Zk,. 
i----1 k i = n i + l  
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It remains to apply the previous step and choose ni such that 

oo 
6 

Z < 2, 1 
k , = n , + l  

STEP 3: Fix {Tti} i such that Vn 

~n(R{ni} ' : )  < e. 

For every sequence of natural numbers {ki} set 

s ( { k , } )  = {~ e [a]: v i  ~,(~) = k,}.  

We show that for every e > 0 there exists a compact set F C_ [a] such that 

(10) Vi k, _< n, =~ Vn v,~(F c N S{ki}) <_ eu , (S {k i } ) .  

This is enough to prove tightness, because (10) implies that for every n, 

un(F ~) <_ e(1 + un(R)) 

and we already know that the total mass of v,, is uniformly bounded from above. 

The F we will construct will be of the form 

F = { x  e [a]: Vi x,  _< N,} 

where Ni 6 S (we are using an order on S induced by the identification S ~ N). 

Clearly, this is a compact set. We show how to choose {N,}. Set 

Z ; ( N )  = Z{eVk(x):  x �9 [a];Tkx = x ; r , (x )  = k;3 i  x,  > g } .  

Obviously, Z ~ ( N )  "~ 0 as n ~ oc. For every i, we choose N, in a way such that  

for every k _< ni 

* _ r Z *  Zk(N ' )  < 2-~B[ k" 

We make sure that {N~} are chosen in an increasing way and that 

N, > sup{xa(i)} 
a_>O 

(recall that  xa was chosen to be periodic, so its coordinates are bounded). 
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Fix {ki} <_ {hi} 
k l + . . . + k N > _ n .  

such that  vn ( S { ki } ) > O. 

Since Ni > sup{x~(i)} >_ a, 

Fix N = N(n ,  {ki}) such tha t  

i = l  " m : l  m = l  

N 1 N 
< , z "  - , . . . ,k ,_ ,  k, ( g i )  

i-.= l =" 

Z~,+, ..... k, 1.~((kj},>,)(x~) 

N N 

i = 1  l : i  

Tightness is proved. 

By tightness, there exists a subsequence mk such tha t  Yb �9 S, {vb~}k>l is 

w*-convergent. We denote its limit by u b and set v = Y-:~beS ub" It is not difficult 

to check tha t  

(11) rib] 0 < rib] < ec. 

We show tha t  L*cv = Av. By recurrence, an ./~ oc. A s tandard calculation 

shows tha t  for every [b] and N,  v(I[,~o<N]Lr = A~,(I[~,<~]I~). It follows 

from the Lebesgue monotone convergence theorem tha t  v(Lr = A~[b]. Since 

[b] was arbitrary,  we have tha t  L*cv = A~,. 
We show tha t  v is conservative. One checks tha t  the transfer opera tor  of v is 

-- A-~Lr To prove conservativity it is enough to show that  for some positive 

integrable function f ,  }--~k>l 2bkf = oc almost everywhere. Set f = }--~es fal[a] 

where f~ > 0 are chosen so tha t  v ( f )  < oo. For every a �9 S and x �9 [a] 

o o  o o  

Z -> B;'So a) = 
k = l  k = l  

Conservat ivi ty follows. | 

3.2 THE SCHWEIGER PROPERTY. Let X be a topological Markov shift and # 

be a measure supported on X such tha t  # ,~ # o T -1  and # .., # o T. Iz is said to 

have the S c h w e i g e r  p r o p e r t y  (see [3]) if there exists a collection of cylinders 

such that:  
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1. the members of Tr have finite positive measures and UT~ = X rnod v; 

2. for every [b] C 7Z and arbitrary cylinder [a], if [a_, b] =/= 0 then [a_, b] e 7~; 

3. there exists a constant C > 1 such that for every [b] C ~ of length n and 

# x # almost all x, y e [b] x [b] 

dl~ N C + 1 ~ d #  (12) dl~oT,  (x) = N(y ). 

Aaronson, Denker and Urbanski proved in [3] that if # has the Schweiger 

property, is supported on a topologically mixing topological Markov shift, and is 

conservative, then: 

1. # is exact (hence ergodic); 

2. there exists a a-finite invariat measure m # such that dm ",~ log(-~ ) is bounded 

on every B E 7~; 

3. every [b] E 7r is a Darling-Kac set for m with a continued fraction mixing 

return time process (see [3] for definitions and implications); 

4. m is po in twise  dua l  ergodic:  there exist am > 0 such that for every 

f �9 Ll(m) 

1 
~ k f  ~ m(f )  a.e., 

a m  rt - -~00 
k = l  

where T is the transfer operator of m. 

R6nyi's property states that (12) holds for all cylinders (see [2]). It follows 

from local H61der continuity that v satisfies R6nyi's property with respect to the 

partition generated by cylinders of length two. It is not true in general, however, 

that v satisfies this property with respect to all cylinders, inchlding those of 

length one (see Example 2 below). In order to obtain information on cylinders of 

length one as well, we need the following lemma, which was inspired by [3]. For 

every c �9 S set 7~c = {[bo, . . . ,bn-1] :n  �9 N,b,~-i = c}. Note that It] �9 7~. 

LEMMA 1: Let X be topologically mixing and r locally H61der continuous. Sup- 

pose that u is a conservative measure, [inite and positive on cylinders such that 

L*cu = Au. Then Vc �9 S there exists a density function q = q(~): X -+ (0, 2 )  

such that &'c = q(':) du has the Schweiger property with respect to Tic. q can be 

chosen to be constant on partition sets. 

Proof: For every 1 < _ r e < n - 1  and [b] oflength n set 

r  = ~nf(Cm(x) :  ~ Z [b]}. 
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By (8), Vx �9 [b] d~m(X) = r  + log Bn-,~.  Set q(x)  = q(C)(x) = qzo 
where 

[b] c T[c] 
qb = 1, else 

and set dv~. = qdv. A calculation shows tha t  dvc o T n = qc o T'~dv o T n whence 

dv~ _ c1~ )_,~ e ~  
duc o T '~ q~ o T n 

It follows tha t  for every x E [bo, . . . ,  bn-1] such tha t  bn-1 = c 

dvc 
due o T n (x) = qb~ ee~(z) = B~lA-nqboe4'~-l(x) .  

as .  

Thus (12) is proved. 

Obviously for every [b] in T~. and for every [al, [_a, b] is either empty  or in 

"Re. We show tha t  X = URr  Assume this were not the case. Then 

3a �9 S 3A C_ [a] measurable of positive measure such that  v~(A M U Re) = 0. By 

topological mixing there exists a [c] C_C_ [c] such tha t  [c, a] # o. Choose such a c 

of minimal length. Set [c, A] = [c] M T-I~-IA where I_c] denotes the length of [c]. 

Then It, A] r r and 
k dv~ o T I~l 

,AI dvc dv~ = vc(A) > 0 

whence Vc[C, A] > O. Since Ic[ is minimal, 

[c, A] C [c] \T-I (U 'R~)= [c]\ U T-'~[c]' 
n > l  

so by conservativity vc[c, A] = 0. t 

E x a m p l e 2 :  Set S = { a , b , l , 2 , 3 , . . . }  and A = ( t q ) s •  where tij = 1 if and 

only i f i  e {a,b}, j �9 N or i �9 {a,b}, j = i or i = 1, j �9 {a,b} or i # a,b, 1 

and j = i - 1. Set r = logp~o,, 1 where pc, a = Pbb = fo and for all i e N and 

j �9 S ,  Psi = f i ,  Pbi = f ' ,  Pij = 1 where fi ,  and f" will be determined later. Then 
z: ,+1(r 1) ' = 2_.k=O~J,~-k + f~-k) f~  and 

n - 1  

Z~(~b, 1) = Z~(r 1) + E Z~-k(r  1)Zk(r k). 
k---1 

Now choose fo = 1/4, fi = C / T  and f~ = C / 4  i, where C > 0 is a constant  

such tha t  ~,~>1 Z~(r l) = 1. It follows from the renewal theorem tha t  Z,~(r l) 

tends to 1/~--~n>l nZ~,(r 1) > 0 as n tends to infinity. Thus Pc(C) = 0 and r 
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is positive recurrent. Let ~, be the corresponding eigenmeasure (the existence of 

which is guaranteed by Proposition 2). Then there is no density vector {Pk} such 

that  the resulting measure satisfies R~nyi's condition because such a vector must 

satisfy Pk • Pak,Pbk whereas Pak ~ Pbk. 

3.3 EXISTENCE OF h AND {an}n. 

PROPOSITION 3: Ire is recurrent then qh > 0 and 3{an}~=l such that Lch = Ah 
and such that for every cylinder [_b] and x �9 X 

1 n 
- -  ~ A - k ( L ~ l N ) ( x ) n ~  h(x)v[b--]" 
an k=l 

Furthermore, h is bounded away from zero and infinity on partition sets, log h 

and log h o T are locally H51der continuous, and every cylinder is a Darling-Kac 

set for dm = h dv with a continued fraction mixing return time process. 

Proof'. Since r is recurrent, there exists a conservative measure v, finite and 

positive on cylinders, such that L~v = Av. Fix an arbitrary c �9 S and set 

7~c = {[b0,. . . ,  bn-~]: n �9 N, bn-1 = c}. By Lemma 1, 3v~ ,~ v with the Schweiger 

property with respect to R~ such that dv~/dv is constant on partition sets. By 

the results cited in the last section, there exists an exact invariant measure m 

which is equivalent to L'c, hence also to v. Its derivative dm/dt, is bounded away 

from zero and infinity on members of T~c (because d~,c/dt, is constant on partit ion 

sets). This measure is pointwise dual ergodic: there exist a,~ > 0 such that for 

every f C Ll(m) 

n 

(13) --a,~l k~lT~fn~-~-+oo f f 

Set h = dm/dv. Since v is equivalent to m and m is exact, v is conservative 

ergodic and can only have one invariant density (up to a constant). Thus h and m 

are independent of c. It also follows from (13) that {an} is independent of c (up to 

a constant and asymptotic equivalence). The results of the previous section imply 

that  every member of 7r is a Darling-Kac set for m with a continued fraction 

mixing return time process. Since m is independent of c and c is arbitrary, this 

is true for every member of [-Jces Tee, i.e. for all cylinders. The same reasoning 

shows that  h is bounded away from zero and infinity on every cylinder. Thus, 

since v is positive and finite on cylinders, so is m. 

We show that h and {a,~} are the required eigenfunction and sequence. The 

transfer operator of dra is given by T f  = A-lh-aL~(h.f) (because dm = hdv 
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and the transfer operator of u is given by A-1Lr Thus, for every cylinder [b] 

n n 

(14) 1 E A-kL~ l[bl = l h  E Tk(h-1 l[bJ)" 
an k=l an k=l 

For every cylinder [b] the function h - l l ~  is m-integrable (because h is bounded 

away from zero on cylinders). Thus (14) implies that for m-almost every x �9 X 

for every cylinder [b] 

n 

(15) 1 ~ A_k(L~l[bl)(x) ~-}-~---+oo h(x)~,[b] 
a .  : 

Since u is positive on cylinders, and m ~ u, there is a dense set of points x �9 X 

for which (15) is valid for every cylinder [b]. By (8), Vm _> 1 Vk V,n[log(L~l~)] < 

log B,n and we have that the logarithm of each of the summands in the left hand 

side of (15) is uniformly continuous in x. It follows that h has a version for which 

(15) holds everywhere for every cylinder [b]. This version must satisfy 

(16) Vm >_ 1 Vm[logh] < logBrn 

whence log h and log h o T are locally Hhlder continuous. We see, again, that h 

is uniformly bounded away from zero and infinity on partition sets, because the 

last estimation is also valid for the case m = 1, 

It is now possible to show that h is an eigenfunction. Applying Lr on both 

sides of (15) (and noting that by conservativity an --+ oo) it is easy to see that 

Lch <_ Ah. Set f = h - A-1Lch.  This is a non-negative function which satis- 
ties ~']~k>o A - k L ~ f  < oo. Since u is ergodic conservative with transfer operator 

A-1Lr this is impossible unless f = 0 u-a.e. Since f is continuous and u sup- 

ported everywhere, f = 0 whence Lch = Ah. | 

3.4 IDENTIFICATION OF {an}n. 

PROPOSITION 4: Let m and {a,}n be as in Proposition 3. Then for every a E S 

n 
1 

an ~ mid] Z 
k = l  

Proof: Let T denote the transfer operator of m. For every cylinder [a] of length 

N set Z , ( r  = ~ T " x = ,  er and choose some x~ �9 [a]. By (16), for 

every N >_ 1 and almost all xa_ �9 [a] 

,(17) A-nZ , ( r  = B ~ I ( A - n L ~ I ~ ) ( x ~  = B~2(Tnlh])(x~).  
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By (13) 

(18) ~-~'im, limn_~ [ 1  ~-~ A_kZk(r a) ] = BN~:2m[a]" 
k=l  

The idea is to sum over [a] C_ [a] and deduce that 

lim, lira [ 1  ~A_kZk( r  ] :B~.m[a] 
n ---} ~ n ---~ o o  

k----1 

which implies, since N is arbitrary, that both limits coincide and are equal to 
m[a]. We need a regularity argument to deal with the possibility that there may 
be an infinite number of [hi C_ [a] such that lal = Y. 

Let e > 0 and F = Fe be a compact such that m([a]\F) < e. We denote by 
[a] n a~  -1 the set of all cylinders of length N that are included in [hi. Then, 

n n 

1 E A - k Z k ( r  1 E A-~ E Zk(r 
an an 

k=i k=l h]c_[,~ln,~-' 
n 

i ~ _ ~  E Z~(r 
an = (Ng(oln%~_t 

[ a J n F r  

1 n 
~ A - k  + U. ~ z~(~,a). 

= iNC_l~ - l  
[o_JC_lo)\~" 

Using (16), (17) and the pointwise dual ergodicity of m, we have that for almost 
every za E [a] 

r t  n 

1 ~ - k  E Zk(r < B 2 1 X ' A  -k 

a--/ = ~Ioiooo~_ 1 - Na. 
[aAC_I~I\F 

Thus, 

E [h-;L~(hl~)](xa_.) 
~ c [ . ] n o o N - ~  

n 

_ < t GI \F  z a  

n 

<_ B~B, 1 E(:Fkl[a]kF)(Za) 
an k = l  

----} B~B,m([a]\f). 
~- . .b  O0  

n 

1 ~ ~-~z~(~,.) 
an 

I . l C l a l n . ~  -1  
[,,lnF:~o 

k=l  
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The sum on the right is finite, because F is compact. It follows from this and 

(18) that  

li__~_m, lim l A-kzk(r a = B 2m [a q- O(e). 
n --~ (X) n -'~ OC 

k = l  ~ \ [ a J C _ t a l n ~  - 1 

[o_]nFe # 0  

Letting r tend to zero and then N tend to infinity, we have that the upper and 

lower limits coincide and are equal to m[a]. | 

3.5 POSITIVE RECURRENCE AND NULL RECURRENCE. Throughout this sub- 

section we assume that X is topologically mixing, r is locally Hhlder continuous 

and recurrent and that A, v and h are its corresponding eigenvalue, eigenmeasure 

and eigenfunction, respectively. As usual, d m =  h dv and T f  = A - l h - l  L r  

is its transfer operator. 

PROPOSITION 5: Under the above assumptions, v(h) < oo iff r is positive 

recurrent, and u(h) = oc i ffr  is null recurrent. 

Proof: Fix a 6 S and let T1 (X) be given by (9). By conservativity, T1 is well 

defined and finite u-almost everywhere in [a]. Set ~bN = l[n=N ]. By (16), 

VN Vk > N 

(TkCN)I[~] = Bf2A-NZ~v(r a)(Tk-Nlbl)l[a]. 

Taking limits in both sides, using pointwise dual ergodicity, we see that 

It follows that 
oo 

= B 2JL- f 
1 .@] Jill n din. 

The result follows from the ergodicity and conservativity of m and the Kac 

formula f[a] rl am = re(X).  | 

PROPOSITION 6: Under the above assumptions, for every cylinder [a_], 

1. i re  is null recurrent then 

A-nL~Ib] ~ 0 
n--) oo 

uniformly on cylinders whence an = o(n); 
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2. if r is positive recurrent then 

h(x) 
A-" ( L ; 1 N ) ( x ) , - ~ L  - - ~  u[a] 

uniformly on compacts whence an ~" n . const. 

Proos Assume that r is null recurrent and fix some a E S. Since Lr is positive 

and h is uniformly bounded away from zero and infinity on [a], it is enough 

to show that ~-"h-XL~(hlM) ~ 0 uniformly on cylinders. Choose unions of 
t l - 4 O O  

partition sets Fn such that Fn /z  X and 0 < m(F,) < oc. r is null recurrent 

so m(FN) /~ on. Set fu  = 1M -- 1FN " m[a]/m(Fg). For every b e S the usual 

estimations yield (for I]" [11 = I1" [ILa(m)) 

B a ^ 
<--~[b] ( IlltblT"fNII1 + mIa] ^. m---(p~N) Illtb]T 1F,,,' II 0 
< B~ .,, m[alm[bl 

I jll + 

Here, T is the transfer operator of m. Since m(fN) = 0 and m is exact (it is 

equivalent to v, and u has the Schweiger property), it follows from a theorem of 

M. Lin (see theorem 1.3.3 in [2]) that []T"fN]IL'(m) ~ O. It follows from this 

and from the fact that m(FN) "r cx~ that IIl[bfibnl[a}]loo ~ 0 as required. 
?l--COO 

Assume now that r is positive recurrent. Without loss of generality, assume 

that v(h) = 1. For every cylinder [a_] the family {A-"L$1~}n is equicontin- 

uous and uniformly bounded on partition sets [b] (by CI]hl[b]l[oo where C = 

1/ inf{h(x):  x E [a]}). It follows that every subsequence has a subsequence of its 

own which converges uniformly on compacts. It is enough to show that the only 

possible limit point is hv[a_], because it will then immediately follow from the 

equicontinuity of {A-'~L~IM }n that this sequence tends uniformly on compacts 

to hu[a_]. 
Assume that A -n~ L~ ~ 1L~ tends to ~ pointwise. Since for every k, A - '~  L~ k 1M 

<_ Ch and Ch is integrable, we have by the dominated convergence theorem that 

f l~p - hu[a]l du = k-.oolim f IA-"~L'~IM - hv[_a]l d. 

= k--,oolim f - v[a_])[  d m .  
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Since m is exact, the last limit is equal to zero and we have that ~o = hv[a] almost 

everywhere. Since ~ must be continuous, it must be equal to h~[a] everywhere. 

(Note that  this argument does not work if r is null recurrent, because in this 

case h - l l h ]  - vial is not integrable.) | 
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