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ABSTRACT

We extend Ruelle’s Perron-Frobenius theorem to the case of-Holder con-
tinuous functions on a topologically mixing topological Markov shift with
a countable number of states. Let P(¢) denote the Gurevic pressure of
¢ and let Ly be the corresponding Ruelle operator. We present a neces-
sary and sufficient condition for the existence of a conservative measure
v and a continuous function h such that L%y = eF(®)y, Lyh = eF(O)p
and characterize the case when f hdv < 00. In the case when dm = hdv
is infinite, we discuss the asymptotic behaviour of Lz, and show how to
interpret dm as an equilibrium measure. We show how the above proper-
ties reflect in the behaviour of a suitable dynamical zeta function. These
results extend the results of [18] where the case [ hdv < co was studied.

1. Introduction and statement of main results

Let S be a countable set of states and A =(t;j)sxs a matrix of zeroes
and ones. We identify S with N and induce an order on §. Let X =
{z € SNV} Vi t,,.., = 1} and T: X — X be the left shift (T't); = iy
Fix r € (0,1) and set t(z,y) = inf{i: z; # y;:}. We endow X with the topology
induced by the metric d,(z,y) = rt®¥). The cylinder sets

lg] = [ao,---yan-1] = {z € X: Vi z; = a;}

form a base for this topology and generate the corresponding Borel o-algebra B.
Let « be the partition {[a]: @ € S}. The elements of « are called partition sets,
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and the members of aj " are called cylinders of length n. We denote the length
of a cylinder [a] by |a}.

X is called topologically mixing if (X,T) is topologically mixing. This
means that Va,b € S 3Ny, Vn > Nyp [a] N T~7[b] # 0. Throughout this paper, a
function ¢: X — R is called locally Holder continuous (with parameter r), if
it is uniformly Lipschitz continuous with respect to d, on all cylinders of length
2. This is equivalent to the requirement that 34 > 0,r € (0, 1) such that ¥n > 2
Valg] < Ar™ where V,[¢] = sup{|é(z) — ¢(¥)|: £o = Yo,---,Tn-1 = Yn—1}. This
notion of Holder continuity extends the one considered in [18], where V,,[¢] < Ar™
was also assumed for n = 1. Indeed, every function of the form ¢ = ¢(zo, 1)
is locally Holder continuous, even when Vi(¢) = oo (in which case it does not
satisfy the condition used in [18]). A close reading of [18] shows that the seemingly
greater generality does not affect the arguments in sections 1-4 there.

The Ruelle Operator [15] is given by (L¢f)(z) = Yp,—, et@ f(y). If
ILs1lloo < oo this is a bounded linear operator on the Banach space of bounded
continuous functions on X. Note that for a countable Markov shift the sum which
defines Ly may be infinite, in which case ¢ must be unbounded in order for it to
converge. This is not a problem since local Holder continuity on a non-compact
space does not imply boundness.

In this paper the term ‘measure’ refers to any o-finite Borel measure g which
is not trivial in the sense that there is some A € B for which p(A) > 0. We use
the notation y(f) for the integral of the function f with respect to p, when it
exists. The measure g o T is the measure given on cylinders by

(1) (no T)(A) =Y u(T(AN[a]))

a€S

Integrals with respect to poT are given by

/fduoT Z f(az) du(z).

acS T[a]

If 1 is non-singular (i.e. g ~ poT1) then p « poT and the function g, =
dp/dpoT is well defined poT almost everywhere. It is characterized mod poT by
the property that Liog,, acts as the transfer operator of p, i.e. u(p1Liogg2) =
u(p1 o T - py) for every @1 € L®(n), 2 € L(u). We will also make use of the
measures g o T™ defined by induction by goT™ = (uoT* ') o T.
For every a € S, n € N set Zn(9,a) = Y pn,_, "1y (z) where ¢, =
:;(1) ¢ o T*. It was shown in [18] that if X is topologically mixing and ¢ is
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locally Hoélder continuous then the limit

Po($) = lim ~log Zn(4,a)

exists, is independent of a and belongs to (—00,00]. If ||Lg1|lcc < 00, this limit
is finite and satisfies

@ Pol¢)=sup {hD)+ [ ddu € PriX),u(-0) < o0}

where Pr(X) denotes the set of all invariant Borel probability measures. Pg(¢)
is called the Gurevic Pressure of ¢, and is a generalization of the Gurevic
topological entropy (Gurevic [7]). (The above results were stated in [18] only
for locally Holder continuous functions for which Vi(¢) < oo but the proofs only
require that . ., V,(¢) be finite.)

In (18] a necessary and sufficient condition was given for Ruelle’s Perron-—
Frobenius theorem to hold: there exist a positive number A, a positive continuous
function h and a o-finite Borel measure v such that Lyh = Ah, L;,u = v,
[ hdv =1 and such that for every cylinder [a], A™"L31}q) = hv{a] uniformly
on compacts. If this is the case, Pg(¢) = logA and dm = hdv is an invariant
probability measure which can be interpreted as the ‘equilibrium’ measure of ¢
in a certain sense (see [18] for details).

In this paper we study the case when Ruelle’s Perron-Frobenius theorem fails.
The main theme of this work is that the phenomenology of this situation is
analogous to that one encounters in the case of a null recurrent or a transient
probabilistic Markov chain (see [6], [10], [20]). In this situation A™"Lg1(4) -0
but there may exist constants a, ' oo for which for every cylinder
agt Yk AT L1 v hv(a] pointwise where Lyh = Ah,Lyv = Av, [hdv =
0o. In this case, the measure dm = hdv is an infinite invariant measure which
can be described as the appropriate ‘equilibrium measure’ of ¢. Given v, the con-
struction of h is done using the techniques of [3] (see also [2], [12], [21], {22], [28],
[29], [30], [31}). The main point of this paper is the construction of a conformal
measure v with respect to which these methods can be applied.

We proceed to make our statements more precise. Set

Zn(¢,a) = Z e Z*($,0) = Z e (@)

Thr=x TRzr=z
xg=0a Tg=airy,.--, z,‘_l¢a

We introduce the following definition, in analogy with the theory of Markov
chains:
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Definition 1: Let X be topologically mixing and ¢ be locally Holder continuous
with finite Gurevic pressure log A. ¢ is called:
1. recurrent if for some (hence all) a € S, 3 . A™"Z,(¢,a) = oo; and
transient otherwise; '
2. positive recurrent if it is recurrent and for some (hence all) a € S,
Y ncoo AT Z0(¢,a) < 00

3. null recurrent if it is recurrent and for some (hence all) a € S,
2n<°o nA " Z%(¢,a) = 00

The notion of positive recurrence was given a different, though equivalent,
definition in [18]. The equivalence follows from Theorem 1 below. It can be
easily verified that if ¢ = ¢(z¢, z;) then recurrence, positive recurrence and null
recurrence are equivalent to the matrix (e"’(""j)) sxs being R-recurrent, R-positive
and R-null in the terminology of Vere-Jones [24], [24]. The main results of this
paper are contained in the following theorem:

THEOREM 1: Let X be topologically mixing and ¢ locally Hélder continuous
with finite Gurevic pressure. ¢ is recurrent iff there exist A > 0, a conservative
measure v, finite and positive on cylinders, and a positive continuous function h
such that Lyv = Av and Lgh = Ah. In this case A = expPg(¢) and Ja, /' 00
such that for every cylinder [a] and z € X

n

®) — S A1) () 3 b,
" k=1
where {an}, satisfies an f[ hdv)™ 3 0 1A A%Z.(¢,a) for every a € S.
Furthermore,
1. if ¢ is positive recurrent then v(h) < oo, ap, ~ n - const, and for every [a],
ATPLE 1 = hv(a]/v(h) uniformly on compacts;
2. if ¢ is null recurrent then v(h) = oo, a, = o(n), and for every [a],
AT LY v 0 uniformly on cylinders.

Remark 1: In the case when ¢ depends on a finite number of coordinates, this
theorem can be derived from the work of Vere-Jones on countable matrices ([24],
[25]). The case when ¢ depends on an infinite number of coordinates, however,
requires techniques which are essentially different. The main new ingredient in
the proof is a tightness argument (see Proposition 2).

Remark 2: It follows from the proof that logh and logh o T are both locally
Hoélder continuous (in particular A is uniformly bounded away from zero and in-
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finity on partition sets). It follows from (3) that v and h are uniquely determined
up to a multiplicative factor.

Remark 3: The measure dm = hdv is invariant and conservative, and its trans-
fer operator is given by Tf = A"1h~1L4(hf). It follows from local Hélder con-
tinuity and results in [3] that dm is exact, pointwise dual ergodic and that for
dm, every cylinder [g] is a Darling-Kac set with an exponential continued frac-
tion mixing return time process. See [2], [3] for definitions and a survey of limit
theorems for such measures m.

We now show how to formulate the results of Theorem 1 in terms of suitable
dynamical zeta functions.

Assume that X is topologically mixing and that ¢ is locally Holder continuous
such that ||Lsl|lc < 0o. In this case, by the results of [18], Pg(¢) is finite and
(2) holds. Recall that Ruelle’s dynamical zeta function [15] is given by

40
) =exp( 22 720
where Z,(¢) = ¥ ocg Zn(6,0) = Ypng e (#). The radius of convergence of ¢
is equal to e~ P(?) where P(¢) = lim,_y00(1/n) log Z,,(¢).

If S is finite, P(¢) = Pg($) whence ¢ is holomorphic in [|2| < e~F], where
P = sup{h,+p(¢)} (in this case X is compact, so ¢ is bounded and the condition
p(—¢) < oo in (2) is empty). It is also known that in this case { has a simple
pole in e~ [15).

If S is infinite P(¢) may be strictly larger than P (for examples in the case
¢ = 0 see [7] and [16]). Therefore, the disc of convergence of ( may be strictly
smaller than {z: |2| < e"¥}. We are naturally led to the consideration of the
following local dynamical zeta functions defined for each a € S,

it = e 3 T 2ute0)

Note that at least formally, { = Hae sCa- The radius of convergence of (, is
independent of a, and is equal to e~ F6(%) where Pg(¢) satisfies (2). Obviously,
¢, has a singularity in e~Fc(4),

As the following corollary shows, the behavior of {, near this singularity
determines the recurrence properties of ¢ (this is similar to the role of
generating functions in renewal theory [6]). The following corollary is obtained
from Theorem 1.
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COROLLARY 1: Let X be topologically mixing and ¢ locally Hélder continuous
such that ||Lglljee < 0o0. Fix a € S and let R = e~F¢(%) be the radius of
convergence of (,.
1. ¢ is recurrent iff (log(,)'(R) = oo. In this case, if dm = hdv is the
corresponding invariant measure and {an}, is a return sequence of m, then

ma]

(oGO~ R (1= ) Sk st 7R

2. ¢ is positive recurrent iff there exists C, > 0 such that (log(s) ~
Ca(1 —t/R)~" ast » R. In this case C, = eP5(®)ma] where m is the
equilibrium probability measure of ¢.

3. ¢ is null recurrent iff (log ()’ = o(1/(1—t/R)) ast / R and ¢ is recurrent.

It follows from the corollary that in the positive recurrent case

1 )m[a](l+o(1))

_ —Pg(¢)
) = (7—rsm; ast fePo

where m is the equilibrium probability measure of ¢. If S is finite, we retrieve the
well known property of ( = [[,cs(a that

Calt) = (1 — ePe@)) 70+ gy A g=Po(9)

(in fact e~Pe(#) is a simple pole [15]). In broad terms, the degree of singularity
for the full zeta function is distributed among the various local zeta functions
according to the equilibrium measure.

In section 2 we apply Theorem 1 to the theory of equilibrium states by
describing the measure dm = hdv as an equilibrium measure in a certain weak
sense, when it is infinite. Section 3 contains a proof of Theorem 1.

Notational Convention: We use the following short-hand notation for
double inequalities: Va,b > 0, B > 1, a = B*'b & B~'b < a < Bb. We
write a = AT B*'b for a = (AB)*'b, and a = A**D for a = (4F)*'b.

ACKNOWLEDGEMENT: This paper constitutes part of a Ph.D. thesis which was
prepared in Tel Aviv University under the instruction of Jon Aaronson, to whom
I would like to express my gratitude for his support and encouragment, and for
many conversations and useful suggestions.



Vol. 121, 2001 NULL RECURRENT POTENTIALS 291

2. Application to the theory of equilibrium states

Let X be topologically mixing and ¢ be a locally Holder continuous function
with finite Gurevic pressure. Assume ¢ is recurrent. Let A\, v and h denote the
eigenvalue, eigenmeasure and eigenfunction given by Theorem 1. It is easy to
verify that the measure dm = hdv is an invariant conservative measure. This is
a Gibbs measure for ¢ in the following sense: Va,b € S AM,p > 1 such that for
m-almost all z € X

M2)et® i1 bn@)-nPe(s)

(4) m(IE(),...,xn—llzn,$n+1,... = /\ﬂh(Tnx) = zortn

This is weaker than the Gibbs property used by Bowen in (5], because the bound
M, z, may depend on z. To prove (4), check that the transfer operator of m
is given by T'f = A1h=1L,4(hf) and that Eq,(f|T"B) = (T"f) o T™. The rest
follows by direct computation from the fact that h is bounded away from zero
and infinity on partition sets. Note that if ¢ is null recurrent, m is infinite.

We want to describe the measure m as a solution of a suitable variational
problem. This was done for the positive recurrent case in [18] so we focus on null
recurrent potentials. For such potentials m is infinite and the notion of entropy
requires explanation.

We recall the definition given in [11], following the approach of [1]. Let
(X, B, i1, T) be an ergodic probability preserving transformation. For every mea-
surable set with positive measure A one can define the induced transforma-
tion Ty: A - A by Taz = T%4(®)z where p4(z) = inf{n > 1: T"z € A} (the
Poincaré Recurrence theorem guarantees that w4 < co almost everywhere on A).
It is known that the probability measure pa(E) = p(ENA)/u(A) is Ta-invariant
and ergodic, and that its entropy is given by the Abramov Formula [4]:

hu(T) = p(A)hy, (Ta)-

If p is infinite, ergodic and conservative, the same method of inducing applies
(in this case Poincaré’s theorem is replaced by the conservativity assumption).
Applying the Abramov formula to T4,Tp as induced versions of T4yp one sees
that

0 < u(A), u(B) < 00 = (Ao (Ta) = u(B)huy (Ts).

Thus, the number p(A)h,,(T4) is independent of the choice of A € B (as long
as 0 < pu(A) < oo) and may therefore be used as the definition of the entropy of
the infinite conservative ergodic measure p.
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Example 1 (Krengel {11]): Let (pi;) be a null recurrent irreducible stochastic
matrix and (p;) its stationary vector. Let u be the corresponding invariant infinite
Markovian measure. Then h, = — E” PsDst 10g Pyt -

For examples arising from interval maps, see [21].

THEOREM 2: Let X be topologically mixing and ¢ a recurrent locally Holder
continuous function with finite Gurevic pressure.
1. For every conservative ergodic invariant measure p which is finite on
partition sets, if u(Pg(¢) — ¢) < oo then h,(T) < p(Ps(¢) — ¢).
2. Let h and v be as in Theorem 1 and set dm = hdv. If m{Pg(¢$) — ¢) < 0
then hn(T) = m(P5(9) - 9).

Proof: Without loss of generality assume that Pg(¢) = 0 (we can always pass
to the potential ¢ — Pg(¢)). Fix some invariant measure p which satisfies the
assumptions of the theorem and choose some partition set A of (finite) positive
measure.

Let pa be the probability measure ps(E) = p(AN E)/pu(A). Let Tq: A — A
be the induced map Taz = T¥4®)z where p4(z) = 14inf{n > 0: T"z € A}.
Then p4 is T4 invariant. Let

S: ={[a) € A: A appears only once in g and [a, 4] # ¢}.

This is a generating Markov partition for T4 (p4(US) = 1 by conservativity). Set
X = (5)NU{0} and let m: X — A C X be the natural injection 7([a]i[a]z...) =
(a1;@9;.-.). For every p as in the above set i = 4 o 7. It is easy to check that
the map m: X — X is a measure theoretic isomorphism between the systems
(A,BN A, pa,Ty) and (X,B(X),5,T) where T: X — X is the left shift. Let
#: X = R be the induced version of the potential ¢ given by

pa—1 '
5:( Z ¢OT')O7T.
1=0

This is a locally Holder continuous function (in fact, it even satisfies Vi(¢) < oo,
since if 7o = [a] € S then 7(z) € [a, A]). The proof of local Hélder continuity is
standard, and is therefore omitted.

Let L denote the Ruelle operator of 8, Lzf =3 Fyes e®W f(y). Set ¥ = vor
and h = how. We claim that L%ﬁ =7, Lah = h. To see this note that

dm
IOgdmoT =¢+logh—loghoT
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(because f — h=!Ly(hf) acts as the transfer operator of m). Let m4 denote the
normalized restriction of m to A and 7@ = m4 o w. Then since T4 = T¥4,

pa—1
A i
l()gm = ; poT ' +logh—loghoTy
whence
dm _ _ o
(5) log _m_ =¢+logh—loghoT.
dimoT

Since m is T invariant, my4 is T4 invariant. It follows that 77 is T invariant,
whence Ly, 51 = 1 where g = logdm/dm o T. It follows from (5) that

3 e(@+logh—loghoT)(y) _ {
Ty:z
whence Lgﬁ = h. We show that L%_ = U. Without loss of generality, di =

R ldm (the only difference is a normalizing constant). Using (5) and the fact
that Liogg acts as the transfer operator of m, we have that for every f € LY(7),

/La;fdﬁ:/ﬁ_lLafdm=/Llogg(ﬁ_lf)dm=/fdv

as required.

It follows from Theorem 1 and the relations Lgﬁ = h, Liﬁ =7 and 7(h) =
v(14h) < oo that ¢ is positive recurrent and that Pg(¢) = 0. Since h = hon
and 7(X) C A, h is uniformly bounded away from zero and infinity. It follows
that ||Lz1||ec < oo. By (2),

sup {hu(T) + /adu: wis T invariant, u(X) = 1, u(—¢) < oo} = Pg(¢) = 0.

Since for every conservative invariant (possibly infinite) ergodic measure p such
that u(A) < oc and p(—¢) < oo the measure & = p4 o7 is a T invariant ergodic
probability measure such that

pa-1
WAE-B) = - [ Y 0T i = ul-9) < oo,
A k=0
we have that hy(T) + k(@) = u(A) ha(T) + E(@)] < 0.
We now assume that u = m and that m(—¢) < oo, and show that hn,(T) +
m(¢) = 0. X clearly satisfies the big images property: 3by,...,bn € S such that
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for every a € S there is some b; such that [a,b;] is not empty (in fact for every
a,b €8 [a, b] is non-empty). Since h is uniformly bounded away from zero and
infinity, 7 is a Gibbs measure for ¢ in the sense of Bowen [5]: there is some global

constant M > 1 such that for every ag,...,a,_; € Sand z € [ag,...,0a, ,] C X,
n—1 "

(6) Mgy 181 = M*exp } G(T 2)
k=0

(see [18], Theorem 8). Let @ = {[a]: a € S} denote the natural partition of X.
By the continuity properties of ¢ and by (6)

1
= —m/qbdm-{—logM,

whence Hm(@) < oo. Since @ is a generator with finite entropy, we have by the
Rohlin formula [14] that

dm

hﬁ(T)z—/log dﬁ=—/$dﬁ=———l—/¢dm.

dmoT m(A)

Multiplying both sides by m(A) we have that h, (T) = —m(¢) as required. ]

Remark 4: 1t follows from the proof that m is the unique up to a constant
conservative ergodic invariant measure such that Hmz(@) < oo and hn,(T) =
m(Pg(4) — ¢). since by a trivial generalization of an argument of Bowen, if
there exists a probability measure which is Gibbs in the sense of Bowen, with a
generator which has finite entropy, then this measure is the unique solution of

the variational problem (see [5]).

The problem with the last theorem is that frequently both h,(T) and
m(Pg(¢) — ¢) are infinite. In this situation, the sum h,(T) + m(¢ — Pg(4))
is meaningless. The following theorem completes our discussion by treating this
case as well.
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Set

I, = =) 1jg log u([a]|T~'B).
aES

This is well defined for every u which is finite on partition sets. The following
theorem generalizes theorem 7 in (18] (see also [13], [27], [28]).

THEOREM 3: Let X be topologically mixing and ¢ locally Hélder continuous
with finite Gurevic pressure. Assume that ¢ is recurrent, let h and v be as in
Theorem 1 and set

¢ =¢+logh—loghoT.

Then for every conservative invariant measure p which is finite on partition sets,
I, +¢' — Pg(¢') is one-sided integrable with respect to p and

(7 ~o0< [y 46 = Po(@#))du <0
if u ~ poT, the integral in (7) is equal to zero iff u is proportional to hdy.

Proof: Fix a conservative invariant measure u finite on partition sets and set

9u = dp/dpoT,

where po T is given by (1). Recall that the transfer operator of u is given by
Lyog g, and that

E.(fIT™'B) = (Liogg, f) o T-
It follows that
I, = -logg,.
Set g = A™'e®h/h o T where A = expPg(¢). One checks that 3 p, _, g(y) = 1

and that 3, _ g,(y) = 1 for 4 almost all z € X (the first equality follows from
the equation Lyh = Ah; the second follows from the identity

wl(f Y 9uly) = ilLiogg, (f o T)) = (),

Ty=z

which is satisfied for every f € L(p)).

We show that I, + ¢’ — Pg(¢') is one-sided integrable. We use the notation
Yt =Pl 50) and show that (I, +¢' — Po(¢'))* is integrable. Fix a sequence of
measurable sets 4, / X such that 0 < u(A4,) < co. Fix an arbitrary integrable
function f > 0. Set

Astn =AnN[s < g/g, <t
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Using the inequality logz < z — 1 we see that for every s,t,n,
| Ut d=Po(@)*foTdu= [ (1080, +1089)*La,,.f 0T do
s,t,n

= /[log(g/gp)]ﬂm'.,"fonu
< [(£-1) 1anf o T

Ju

=/foT-E“((i-—l)+1A,_,_n T‘lB) dp

:[foT > gg(y)lA,,z,n(y)(i(g) -

Ty=Tz

= /foT Y 1a,,.W8W) - g.()]* dp.
Ty=Tz
The last integrand is bounded by f o T. Since this is true for all s,¢,n the
integral u[(I, + ¢ — Pg(4'))*] is finite. This implies that I,, + ¢’ — Pg(¢') is
one-sided integrable. Applying the same calculation to I, + ¢' — Pg(¢’) rather
than (I, + ¢' — Pg(¢'))* yields the inequality

[ 1ot d - Pe@Ndus [ 10T T 1an0lo0) - gl
Astin Ty=Txzx

The integrand on the left is bounded in absolute value by the integrable
function f o T. Its pointwise limit when s — 0, t,n — o0 is zero, because

Y ry=r=[9(¥) — 9u(y)] = 0. We may therefore apply the dominated convergence
theorem and deduce

[ 1oTit+ ¢~ Pa(@)au<o.

Since f was arbitrary, (7) follows.

Assume that u ~ poT. We show that the integral in (7) is equal to zero if and
only if du is proportional to hdv. If du is proportional to h dv the integrand in (7)
is identically zero because then I, = — log g, where g = A™*e®h/hoT (this follows
from the fact that the transfer operator of any measure proportional to hdv is
given by f — A" h 1L4(hf)). We show the reverse implication. Assume that p
is such that g ~ poT and that there is an equality in (7). A close inspection
of the proof shows that this is possible only if log(g/g,) = (g/9,) — 1 1 almost
everywhere. This is possible only if g, = g mod p. Since y ~ po T, this implies
that g, = g mod poT. It follows that Liog 4 is the transfer operator of 4. Consider
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the function ¢ = logg = ¢ + logh —loghoT — log A. This is a locally Holder
continuous function (because by Remark 2 after Theorem 1, logh and logho T
are both locally Holder continuous). It is also clear that Lyl = 1, Lip=up
whence ¢ is recurrent. Since it is also true that Ly (hdv) = Ly, ,(hdv) = hdv
we have by the convergence part of Theorem 1 that i and hdv are proportional.
|

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Throughout the proof we
assume that X is a topologically mixing countable Markov shift and that ¢: X —
R is locally Holder continuous with finite Gurevic pressure. Set

By, = exp Z Vald) (k=1,2,..).

n=k+1

Local Holder continuity implies that Vn > 1, B, < oo and B, N\, 1. The following
inequality will be used constantly:

(8) To=Y0y. ., Tn_1 =Yn_1=>¥m<n—1 (=@ = Bl etm¥)),
A frequently used corollary is that Vz, € [a],
Zn(,a) = BE (L31(5)(2a).

The reader should note that the assumption that the Gurevic pressure is finite
implies that all of the Z,(¢,a) are finite (because by local Holder continuity
3C > 1 such that Ym,n, C™™Z,(¢,a)™ < Zyn(é,a)). This assumption also
implies that the Lg are all defined on bounded functions supported inside a
finite union of partition sets.

3.1 EXISTENCE OF v.

PROPOSITION 1: If there exists A > 0 and a conservative o-finite measure v

which is finite on some cylinder such that Lyv = Av then ¢ is recurrent and
A = eFald)

Proof:  Choose a cylinder [b] with finite positive measure. It is easy to
verify that A~!L, acts as the transfer operator of v, whence by conservativity
Yons1 AT L1y = 0o v-a.e. on [b] (see [2]). Thus, for v-almost all z € [b]

Z,\ " Zal( ¢,b0>B112/\ (L31y)(z) = 0.
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We show that A = eFo{®). It follows from what we have just proved that
A < ePo(®) because the radius of convergence of the series 3,5, Zk(#,bo)z* is
e~Pe(®). Consider Zy(¢,b) = Y pn,—, €**(¥1y(z). By local Hélder continuity,

A" Z.(¢,b) < By < B

ol
— AL 1) dv
] Sy )

By topological mixing and local Hélder continuity n='log Z,(¢,b) — Pg(¢),
whence ) > eFe(9), [ |

PROPOSITION 2: If ¢ is recurrent there exist A > 0 and a conservative measure
v, finite and positive on cylinders, such that L¢V = Av.

Proof: Fix a € S, set A = eP6(®) and let a, = Y p_, A7¥Z(4,a). For every
¥ € X let &, denote the probability measure concentrated on {y}. Fix a periodic
point z, € [a] and set for every b€ S

W= ___Z/\- Z e¢k(y)1[b]

=1 T"y =z

Clearly v2(X) = v2([b]) = Zk L AR (LE1 ) (z4)- Tt follows from local Holder
continuity, topological m1x1ng and the definition of the Gurevic pressure that for
everybe S

0< lim v3(X) < Iim #8(X) < oo.

n—00 n—oo

(It is enough to show that a;'S p_, A"%Z,(¢,b) is bounded away from zero
and infinity for every b. To see this note that 3C,c such that Z,(¢,b) <
CZpic(0,a) and that Vk A=%Z,(¢4,a) < 2B;. The last inequality follows from
A*M Zn($,0) > BT ™ (A% Zi(6,a))™)

We show how to choose a subsequence {mg}i>1 such that for every b € S,
{v%.,} is w* convergent, and show that the non-trivial measure v given by

Vg.k'i;lfl[b] satisfies Lyv = Av. Since X is not compact, to do this we have
to prove that {v},, }x>1 are all tight, i.e.,

Vb Ve > 0 3F = F, . compact such that ¥n v5(F°) < ¢

It follows from the topological mixing of X that if {¥}}n>1 is tight for some b,
then it is tight for every b. Therefore, we may restrict ourselves to the case b = a
and set v3 = vy.
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STEP 1: We show that Y ,5, A7*Z}(4,a) < co. To see this, set T(z) =
1+ Y 451 Zk(¢,a)z* and R(z) = Sis1 Zi(¢,a)zk. 1t is not difficult to ver-
ify that ¥z € (0,A71), T(z) — 1 = BE’R(z)T(z). Therefore Yz € (0,A~1),
R(z) < B? whence R(A™}) < oo.

STEP 2: Set

T

0, z ¢ [a]

where inf ¢ = co. Define by induction 7,(z) = 7 (T @+ 471 g) if r,_4(z) <
oo and 7,(z) = oo else. Note that 7, > 0 only if o = a. For every sequence of
natural numbers {n;};>) set

R({n;}) = {z € [a]: Vi 7i(z) < n;}.
We show that Ve > 0 3{n;} such that Vn v, (R{n;}¢) < e. To see this set
Zky, o = Z{€¢"‘+"‘+""‘(z)3 zo = a; TR+ thmg = 1,¥j <m 1i(2) = k;}-

For {n;}i> s.t. n; is larger than the period of z,,
oo
I/n(R{TL,'}C) < ZV,,[T,’ > ni]

o0
- Z &1— Z Ak Z e?* W10 ®)

i=1 n k=1 Thky=z4
vo=a

00 n
LSS T

=n;+1 Thy=zq k1t +kn=k
vo=a ki>n; N<k

3 hnd 1 = —k - » *
< By Z an Z A Z Zicy ki1 2k kg obn

kol

i=1 " k=n,+1 ky4-+ky=k
ky>n; N<k
oo [=] n
L ~ki 7» —(k=ki . .
O DID IR DE S D DI A
T i=1ki=n41 k=k; k1+4.h.,+<.1;N=,.
00 L&
5 —ki —(k—k;
<BIY, 2 A Zii(a— > A "Zk-k.(«s,a))
i=1k; 1 " =k,

Akizy
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It remains to apply the previous step and choose n; such that
> €
kl:z';“)“’“'Z; <gm
STEP 3: Fix {n;}; such that Vn
vn(R{n;}°) <e.
For every sequence of natural numbers {k;} set
S({k:}) = {z € [a]: Vi 7i(z) = ki}.

We show that for every ¢ > 0 there exists a compact set F' C [a] such that
(10) Vi ki <ny = V0 vp(FENS{k}) <evn(S{ki})
This is enough to prove tightness, because (10) implies that for every n,

vn(F®) < e(1+va(R))

and we already know that the total mass of v, is uniformly bounded from above.
The F we will construct will be of the form

F ={z €[a]: Vi z; < Ny}

where N; € S {we are using an order on S induced by the identification S =~ N}.
Clearly, this is a compact set. We show how to choose {N;}. Set

Z{(N) = Z{ed"‘("): z€a;Tfz =z ; n(z) =k;Jiz; > N}.

Obviously, Z;(N) N\, 0 as n — oco. For every 4, we choose N; in a way such that
for every k < n;

* € *

Zk: (N,) S mz’c .

We make sure that {/V;} are chosen in an increasing way and that

N, > sup{z,()}
>0

(recall that z, was chosen to be periodic, so its coordinates are bounded).
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Fix {k;} < {n;} such that v,(S{k;}) > 0. Fix N = N(n, {k;}) such that
ki +---+ kny > n. Since N; > sup{z,(2)} > q,

N i—-1

vn(FCN S{ki}) < ;Vﬂ{x € S{ki}: dj € < Z kmyglkm)% > Nj}

i

iu {1: € S{k}:3j € (r;lkm,g km>:c]- > N,—}

i=1
N 1 N
<SBYY ) ARz kRN
Z’:.'H ,,,,, k,ls({k1}1>,)($a)

N

€ 1 —(k1+-+k -

B] (ZZ* e "Zh,---,kz1s<{k1};*;.+1>(””“)>
1=t

Tightness is proved.

By tightness, there exists a subsequence my such that Vb € S, {V,‘;Ik}kzl is
w*-convergent. We denote its limit by v* and set v = D bes vb. 1t is not difficult
to check that

(11) V[b] 0 < v[b] < oo.

We show that L;V = Av. By recurrence, a, ' oo. A standard calculation
shows that for every [b] and N, v(1jzo<n)Lolp) = Av(liz,<njlpy)- It follows
from the Lebesgue monotone convergence theorem that v(Lglpy) = Av[b]. Since
[b] was arbitrary, we have that Lyv = Av.

We show that v is conservative. One checks that the transfer operator of v is
T = A~'L4. To prove conservativity it is enough to show that for some positive
integrable function f, Y, T*f = 0o almost everywhere. Set f = 2acs falp
where f, > 0 are chosen so that v(f) < oco. For every a € S and z € [a]

Z,\ ) > By faZ/\ *Zk(¢,a) = o0

k=1

Conservativity follows. |

3.2 THE SCHWEIGER PROPERTY. Let X be a topological Markov shift and u
be a measure supported on X such that g~ poT ' and u~ poT. 4 is said to
have the Schweiger property (see [3]) if there exists a collection of cylinders
R such that:
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1. the members of R have finite positive measures and UR = X mod v;

2. for every [b] € R and arbitrary cylinder [a], if [a, ] # ¢ then [a,b] € R;

3. there exists a constant C > 1 such that for every [b] € R of length n and
@ % p almost all z,y € [b] x [b]

du rers du

12
(12) duoT"[g]x dypoTn

m(y)-

Aaronson, Denker and Urbanski proved in (3] that if p has the Schweiger
property, is supported on a topologically mixing topological Markov shift, and is
conservative, then:

1. pis exact (hence ergodic);

2. there exists a o-finite invariat measure m ~ p such that 1og(‘fi—’,’}) is bounded

on every B e R;

3. every [b] € R is a Darling-Kac set for m with a continued fraction mixing

return time process (see [3] for definitions and implications);

4. m is pointwise dual ergodic: there exist a, > 0 such that for every
feLlm)

1 ok
- kle f = m(f) ae,
where T is the transfer operator of m.

Rényi’s property states that (12) holds for all cylinders (see [2]). It follows
from local Holder continuity that v satisfies Rényi's property with respect to the
partition generated by cylinders of length two. It is not true in general, however,
that v satisfies this property with respect to all cylinders, including those of
length one (see Example 2 below). In order to obtain information on cylinders of
length one as well, we need the following lemma, which was inspired by [3]. For
every ¢ € S set R = {[bo,.-.,bn-1]: n € N,by_1 = c}. Note that [¢] € R..

LeEMMA 1: Let X be topologically mixing and ¢ locally Holder continuous. Sup-
pose that v is a conservative measure, finite and positive on cylinders such that
Lyv = Av. Then Vc € S there exists a density function ¢ = ¢\%: X — (0,0)
such that dv. = ¢') dv has the Schweiger property with respect to R.. q can be
chosen to be constant on partition sets.

Proof: For every 1 < m < n — 1 and [b] of length n set

¢m(b) = inf{¢n(z): z € [B]}.
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By (8), Vz € {b] ¢m(z) = ém(o,- .- Tn-1) £ 10g Bp_m. Set g(z) = ¢Nz) = qq,
where
_ {ed’(c'b)’ (8] € T(c]
=

1, else

and set dv, = qdv. A calculation shows that dv. o T"™ = g. o T™dv o T™ whence

dv, e

— —n_$n
dv,oT?  g.0T" e

It follows that for every z € [bq, ...,bn—1] such that b,y = ¢

T () = Bt = g, ),
Thus (12) is proved.

Obviously for every [p] in R and for every [a], [a,b] is either empty or in
R.. We show that X = |JR.(modv,). Assume this were not the case. Then
3a € S 3A C [a] measurable of positive measure such that v.(AN|YR.) = 0. By
topological mixing there exists a [¢] C [c] such that [¢,a] # ¢. Choose such a ¢
of minimal length. Set [c, A] = [¢] N T~!¢ A where |c| denotes the length of [c].
Then [¢, A] # ¢ and

lel
/ e ol e = ve(4) >0
ca] e

whence v [c, A] > 0. Since |¢| is minimal,

e, A1 € [NTH(URe) = [\ | 770,

n>1

so by conservativity v.[c, A] = 0. |

Example 2: Set S = {a,b,1,2,3,...} and A = (t;j)sxs, where t;; = 1 if and
only if i € {a,b},j € Noric {a,b},j=io0ri=1,j€ {a,b}ori#abl
and j =1 — 1. Set ¢(z) = logpzy .-, Where pya = pey = fo and for all 1 € N and
J €8, pai = fi, poi = fi, pij = 1 where f;, and f; will be determined later. Then
Z311(8,1) = Tilo(frok + fr_i) f§ and

n—1
Zn($:1) = Za(, 1) + Y Zn_4(6,1)Ze(8, k).
k=1
Now choose fo = 1/4, fi = C/2* and f/ = C/4*, where C > 0 is a constant
such that Zn21 Zy(¢,1) = 1. It follows from the renewal theorem that Z,(¢,1)
tends to 1/3°.5,nZ:(4,1) > 0 as n tends to infinity. Thus Pg(¢) = 0 and ¢
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is positive recurrent. Let v be the corresponding eigenmeasure (the existence of
which is guaranteed by Proposition 2). Then there is no density vector {p;} such
that the resulting measure satisfies Rényi’s condition because such a vector must
satisfy px < pak, Pox Whereas par % Dok

3.3 EXISTENCE OF h AND {an}n.

PROPOSITION 3: If ¢ is recurrent then 3h > 0 and 3{an, }32, such that Lyh = Ah
and such that for every cylinder [b] and z € X

1 n

= —k(rk
o A7 (Ll (z) el h{z)v[b).

k=1

Furthermore, h is bounded away from zero and infinity on partition sets, logh
and logh o T are locally Hélder continuous, and every cylinder is a Darling-Kac
set for dm = hdv with a continued fraction mixing return time process.

Proof: Since ¢ is recurrent, there exists a conservative measure v, finite and
positive on cylinders, such that Liv = Av. Fix an arbitrary ¢ € S and set
Re = {[bo,..-;bn—1]: n € N, b,_; = ¢}. By Lemma 1, 3y, ~ v with the Schweiger
property with respect to R. such that dv./dv is constant on partition sets. By
the results cited in the last section, there exists an exact invariant measure m
which is equivalent to v., hence also to v. Its derivative dm/dv is bounded away
from zero and infinity on members of R, (because dv./dv is constant on partition
sets). This measure is pointwise dual ergodic: there exist a, > 0 such that for
every f € L(m)
1 o=

(13) o ’; T"f e fdm a.e.
Set h = dm/dv. Since v is equivalent to m and m is exact, v is conservative
ergodic and can only have one invariant density (up to a constant). Thus h and m
are independent of c. It also follows from (13) that {a,} is independent of ¢ (up to
a constant and asymptotic equivalence). The results of the previous section imply
that every member of R, is a Darling-Kac set for m with a continued fraction
mixing return time process. Since m is independent of ¢ and c is arbitrary, this
is true for every member of {J <5 R, i-e. for all cylinders. The same reasoning
shows that h is bounded away from zero and infinity on every cylinder. Thus,
since v is positive and finite on cylinders, so is m.

We show that A and {a,} are the required eigenfunction and sequence. The
transfer operator of dm is given by Tf = A"IhL4(hf) (because dm = hdv
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and the transfer operator of v is given by A='L4). Thus, for every cylinder [b]
(14) —z,\ ’“Lklu——hZTk )

For every cylinder [b] the function h='1 is m-integrable (because h is bounded
away from zero on cylinders). Thus (14) implies that for m-almost every z € X
for every cylinder [b]

n

1 -
(15) o ’;)\ *(L§lw)(c) 2 h(z)v[d].
Since v is positive on cylinders, and m ~ v, there is a dense set of points z € X
for which (15) is valid for every cylinder [b]. By (8), Vm > 1 Vk Vpp[log(L§1py)] <
log B,,, and we have that the logarithm of each of the summands in the left hand
side of (15) is uniformly continuous in z. It follows that h has a version for which
(15) holds everywhere for every cylinder [b]. This version must satisfy

(16) Vm >1 Vpy[logh] < log Bm

whence log h and logh o T are locally Holder continuous. We see, again, that h
is uniformly bounded away from zero and infinity on partition sets, because the
last estimation is also valid for the case m =1,

It is now possible to show that h is an eigenfunction. Applying Ly on both
sides of (15) (and noting that by conservativity a, — o00) it is easy to see that
Lyh < Ah. Set f = h — A"1Lsh. This is a non-negative function which satis-
fies 3 ko /\‘kLg f < oo. Since v is ergodic conservative with transfer operator
A~1L,, this is impossible unless f = 0 v-a.e. Since f is continuous and v sup-
ported everywhere, f = 0 whence Lgh = Ah. |

3.4 IDENTIFICATION OF {an}n.

PROPOSITION 4: Let m and {an},, be as in Proposition 3. Then for every a € S

o o N
k=

Proof: Let T denote the transfer operator of m. For every cylinder [a] of length
N set Z,(6,a) = Y pnpe, €*(®1y(z) and choose some z, € [a]. By (16), for
every N > 1 and almost all z, € [g]

(17) A" Za($,a) = BEH (A" LB11)(ze) = BE(T™ 1)) (za)-



306 O. M. SARIG Isr. J. Math.

By (13)

n—aoo N—00

_ 1 &
(18) lim , Tim [a— A2 (9, g)] = B¥'mlal.
n k=1

The idea is to sum over [a] C [a] and deduce that

n—oo N0

o= [1
lim , T [;gx “24(6,0)| = Bimld

which implies, since N is arbitrary, that both limits coincide and are equal to
m[a). We need a regularity argument to deal with the possibility that there may
be an infinite number of {g] C [a] such that ja| = N.

Let € > 0 and F = F, be a compact such that m([a]\F) < . We denote by
[a] N~ the set of all cylinders of length N that are included in [a]. Then,

n

=Y N Fzga=—YAF Yz

" k=1 " k=1 [gClaJna) "
1 n
—_ -k
=— > A > Zk(4.0)
? k=1 laJC(a)naly —1
= (o]
la)NF#e
1 n
+ =Y A 3 Zi(s)
k=1 (acleinal !
[a)Cla)\F

Using (16), (17) and the pointwise dual ergodicity of m, we have that for almost
every z, € [a)

Z3F Y Ao <B Yt Y i)
7 ﬂk=1

k=1 laGlanaly =1 leJClalnaly 2
(elClal\F {@ICleI\F
1 n
<B4Bi— Y (AkRLE(h1, o
< By B - ;§1[ o(Aliapnr)](2a)
1 o =
< B{Bi— Y (T*1(a)\F)(2a)
Gn k=1
2
— By Bim((al\F).

Thus,

Lyzaea= ¥ [t aee)+oe.
" k=1

laClalnaly =1 - k=1
laJnF#0
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The sum on the right is finite, because F is compact. It follows from this and
(18) that

lim , lin [ai Z/\_ka(ff’, a)] = Bﬁzm< U [Q]) +O0(e
k=1

n—oo NC N1
[a)Clalna

[alnFe %8

Letting € tend to zero and then N tend to infinity, we have that the upper and
lower limits coincide and are equal to m(a]. i

3.5 POSITIVE RECURRENCE AND NULL RECURRENCE. Throughout this sub-
section we assume that X is topologically mixing, ¢ is locally Holder continuous
and recurrent and that A, v and h are its corresponding eigenvalue, eigenmeasure
and eigenfunction, respectively. As usual, dm = hdv and Tf = AW Lg(hf)
is its transfer operator.

PROPOSITION 5: Under the above assumptions, v(h) < oo iff ¢ is positive
recurrent, and v(h) = oo iff ¢ is null recurrent.

Proof: Fix a € S and let 7(z) be given by (9). By conservativity, 7 is well
defined and finite v-almost everywhere in [a]. Set v = 1j,—n). By (16),
VNVE>N

(T*¥n)1ie = BE*AN Z3 (6, ) (T* V) Lia)-
Taking limits in both sides, using pointwise dual ergodicity, we see that
A NZn(¢,a) = Blﬂm[n = N]/mla).

It follows that

Zn/\ "Zn($,0) = Bf? — l[a] / m dm.

The result follows from the ergodicity and conservativity of m and the Kac
formula f[a] m1dm = m(X). |

PROPOSITION 6: Under the above assumptions, for every cylinder [a],
1. if ¢ is null recurrent then

-nrn

uniformly on cylinders whence a,, = o(n);
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2. if ¢ is positive recurrent then

h
(Lo 2, vl

uniformly on compacts whence a,, ~ n - const.

Proof: Assume that ¢ is null recurrent and fix some a € S. Since Ly is positive
and h is uniformly bounded away from zero and infinity on [a], it is enough
to show that /\"‘h“L;(hl[a]) "jo)oO uniformly on cylinders. Choose unions of
partition sets F, such that F,, ” X and 0 < m(F,) < o0. ¢ is null recurrent

so m(Fy) / oo. Set fn = 1{a) — Lpy - mla]/m(Fy). For every b € S the usual
estimations yield (for || - | = || - [z (m))

15T allloo <BEF— 11157 Lia)ln

0
ol O N R ety

BL(m )y + Tl

m(p] (Fn)

Here, T is the transfer operator of m. Since m(fy) = 0 and m is exact (it is
equivalent to v, and v has the Schweiger property), it follows from a theorem of
M. Lin (see theorem 1.3.3 in [2]) that ||’.f"‘fN||Lx(m) — 0. It follows from this
and from the fact that m(Fy) T oo that ||1[b]T"l[,,]|loo o d 0 as required.

Assume now that ¢ is positive recurrent. Without loss of generality, assume
that v(h) = 1. For every cylinder [g] the family {A~"L3}1(4j}, is equicontin-
uous and uniformly bounded on partition sets [b] (by C|hly)|lc Where C =
1/inf{h(z): z € [a]}). It follows that every subsequence has a subsequence of its
own which converges uniformly on compacts. It is enough to show that the only
possible limit point is hv[g], because it will then immediately follow from the
equicontinuity of {)\‘”Lgl[gl}n that this sequence tends uniformly on compacts
to hv(a).

Assume that A7™* L;" 1|4 tends to ¢ pointwise. Since for every k, A7 Lg“ Lig)
< Ch and Ch is integrable, we have by the dominated convergence theorem that

[ o= widia = tim [ 323 1g - gl ao

= lim /|T"“(h_11[ﬂ—u[g])|dm.

k—oo



Vol. 121, 2001 NULL RECURRENT POTENTIALS 309

Since m is exact, the last limit is equal to zero and we have that ¢ = hv[a] almost
everywhere. Since ¢ must be continuous, it must be equal to hv(a] everywhere.
(Note that this argument does not work if ¢ is null recurrent, because in this
case h='1(4) — v[a] is not integrable.) [ |
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